

Cybersecurity Data Science Overview

Hands-on analytics practitioner methods and best practices

Scott Mongeau Cybersecurity Data Scientist

What We Will Address Today

WHY...

- is cybersecurity data science 'a thing'?
- sharing and socializing best practices from adjacent domains

WHAT...

• do we mean by 'data science' in the cyber domain?

HOW...

- is it delivered?
- and given data challenges and ever-emerging new incidents, how do we...
 - make the best of limitations,
 - extract hidden patterns, and
 - make focused detection and remediation a realistic goal.

'How Do I...' Points to Be Conveyed

- **LECHNOLOGY** Implement data processing methods to address cybersecurity data challenges
 - Leverage and extend existing cybersecurity alerts and rules
 - Address challenges associated with big and fast data
 - Implement models for pattern detection using unsupervised machine learning
 - Boot-strap extracted patterns to detect targeted anomalies
 - Detect focused cybersecurity anomalies with predictive machine learning
 - Optimize cybersecurity resource allocation

PROCESS

DRGANIZATION

- Plan and implement an operational cybersecurity data analytics process
- Design and implement big data analytics approaches (high level)
- Integrate analytics into the enterprise cybersecurity process

Context Setting

Introduction to Cybersecurity Data Science

Scott Mongeau Cybersecurity Data Scientist

Cybersecurity Context

The Fraud Triangle: Not 'IF', but 'When?'

FRACTURED LOGIC

- "I'm only playing around it is a game"
- "I am not respected"
- "I need / deserve the money"
- "They should not have such poor security - I will teach them a lesson"
- "They had it coming"
- "They are working closely with a country I do not agree with"

SYSTEMIC WEAKNESSES STRIDE susceptibility

- Spoofing
- Tampering
- Repudiation
- Information disclosure
- Denial of service
- Elevation of privilege

STRATEGIC

- National interests •
- Corporate espionage / sabotage

FINANCIAL

- Fraud
- Theft (i.e. credit cards)
- Market manipulation

REPUTATIONAL

- Recognition of expertise / fame in hacker networks
- Making a political statement

PERSONAL

- Curiousitv
- Greed or revenge
- Character flaws (i.e. sociopathic disorder)

Threat Actors

Designing for Security. Wiley. Microsoft. Threat Modeling: Threat Personas. 2014. 2003. David. Shostack, Adam. Aucsmith,

8

•

•

Cybercrime Price List

When Seconds Count: How Security Analytics Improves Cybersecurity Defenses

Most important objectives for a cybersecurity analytics solution*

Determine the root cause of past security events (forensics)

Provide advance warning about potential internal threats and attackers

> Prioritize alerts, security threats and vulnerabilities

Provide advance warning about potential external threats and attackers

* Survey of 621 global IT security practitioners

Data Volumes and Security Challenge

Cybersecurity Context

CHALLENGES		→ DATA SCIENCE	
Cyber detection is challenged by		Data science addresses	
Z HENRY 2 HENRY 2 HENRY	high volumes of structured and unstructured data	operation at big data scale at high velocity	
	disconnected data sources of variable quality	assess, extract, transform, and aggregate data	
	high false positive alerts with rule-based approaches	unsupervised machine learning identifies hidden patterns	
?	lack of statistical baselines to establish validity	effective statistical diagnostics for model validation	
X	slow and manual investigation processes (needles in the haystack)	supply hunters with targeted alerts based on demonstrable statistical anomalies	-

https://www.sas.com/en_us/whitepapers/ponemon-how-securityanalytics-improves-cybersecurity-defenses-108679.html

Level of difficulty in reducing false alerts*

* Survey of 621 global IT security practitioners

When Seconds Count: How Security Analytics Improves Cybersecurity Defenses

Sponsored by SAS Institute
Independently conducted by Ponemon Institute LLC
Publication Date: January 2017

Insufficient resources 40% Ponemon institute® Research Report 27% Lack of clear leadership Executives do not see cybersecurity as a 24% significant risk Lack of collaboration with other functions 19% No understanding how to protect against cyber 11% attacks Not a priority issue 6% 0% 10% 20% 30% 40% 50%

Data challenges

Lack of in-house expertise

Insufficient technologies

Challenges Preventing Successful Use of Cybersecurity Analytics*

https://www.sas.com/en_us/whitepapers/ponemon-how-securityanalytics-improves-cybersecurity-defenses-108679.html

* Survey of 621 global IT security practitioners

65%

58%

50%

60%

70%

Data Science

Advanced Analytics

Scientific Method

Scientific Experimentation

Cybersecurity Data Science as a Process

Simply Complex

Identifying targeted anomalies amongst an ocean of noise...

SOURCE Aggarwal, Charu C. (2017). "Outlier Analysis: Second Edition". Springer International Publishing AG.

Simplified Ideal 'To-Be' End State

Analytics Life Cycle

SOURCE SAS Institute. (2016). "Managing the Analytical Life Cycle for Decisions at Scale." Available at https://www.sas.com/content/dam/SAS/en_us/doc/whitepaper1/manage-analytical-life-cycle-continuous-innovation-106179.pdf

Data Science for Cybersecurity: High-Level Process

Data extraction, aggregation,
 quality, and variable selection
 Discovery of hidden patterns and groupings (segmentation)

- 3. Targeted anomaly detection
- 4. Operationalization of investigative cycle
- 5. Ongoing risk / operational model refinement and management

Cybersecurity Analytics Maturity Curve (Simplified)

