
2. DATA

Challenges, Sources, Features, Methods

Cybersecurity Data Science (CSDS)

Learning Objectives

Cybersecurity Data Science (CSDS) Lifecycle

Model

CSDS Process Unified Orchestration

Preparation

Quality

Importance of Data Preparation

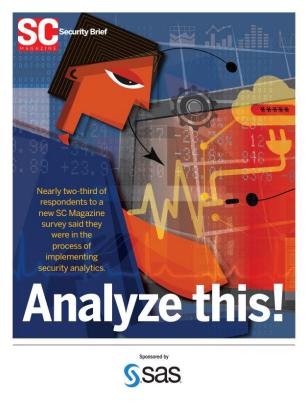
Which data set would you rather for analytics?

Before Data Preparation

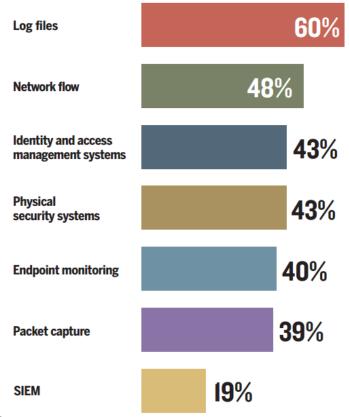
ID	NAME	COUNTRY	EMAIL_ADDRESS	
101	CARLOS VIERA	US CARLOS.VIERA@XXX.COM		
102	Richard Schmidt	US richard.schmidt@xxx.com		
103	Michael Jameson	United States	michael.jameson@xxx.com	
104	Albert Moore	US	AL.Moore@xxx.com	
105	Harvey L Monk	United States	harvey.monk@xxx.com	
106	Shelley Holmes	USA	sholmes@xxx.com	
107	Al Moore	US	al.moore@xxx.com	
108	MIKE JAMESON	USA	Michael.Jameson@xxx.com	
109	Shelly Holms	USA	sholmes@xxx.com	
110	Anne Horton	US	Anne.Horton@XXX.com	

ID	NAME	COUNTRY	EMAIL_ADDRESS	GENDER
101	Carlos Viera	USA	carlos.viera@xxx.com	М
102	Richard Schmidt	USA	richard.schmidt@xxx.com	М
103	Michael Jameson	USA	michael.jameson@xxx.com	М
104	Albert Moore	USA	al.moore@xxx.com	М
105	Harvey L Monk	USA	harvey.monk@xxx.com	М
106	Shelley Holmes	USA	sholmes@xxx.com	F
110	Anne Horton	USA	anne.horton@xxx.com	F

After Data Preparation

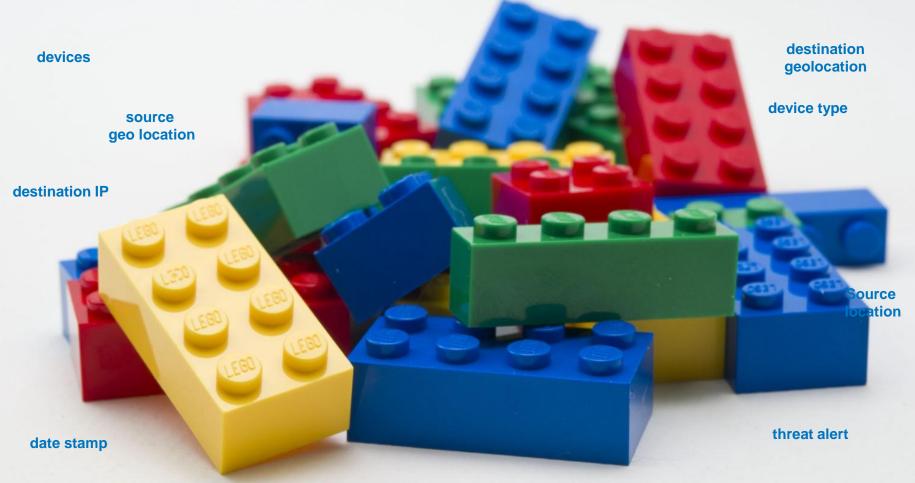

Objectives of Data Discovery

- Framing data in the cybersecurity analytics lifecycle
- Refining data: 'feature extraction / selection'
 - Assessing and exploring to gain a basic insights
 - Collecting, consolidating, and cleaning
 - Transforming and extracting new measures
 - Establishing a foundation for pattern analysis
 - Reducing and refining variables
- Hands-on data exploration / extraction

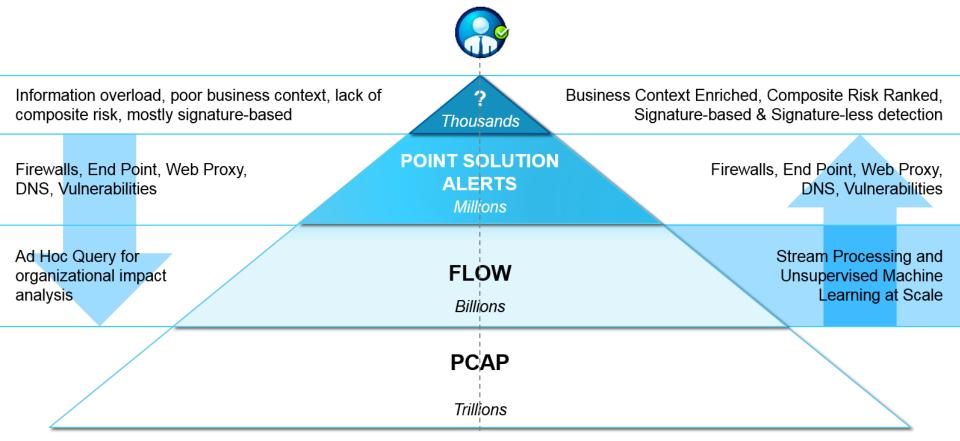

Cybersecurity Data Challenges

SOURCE

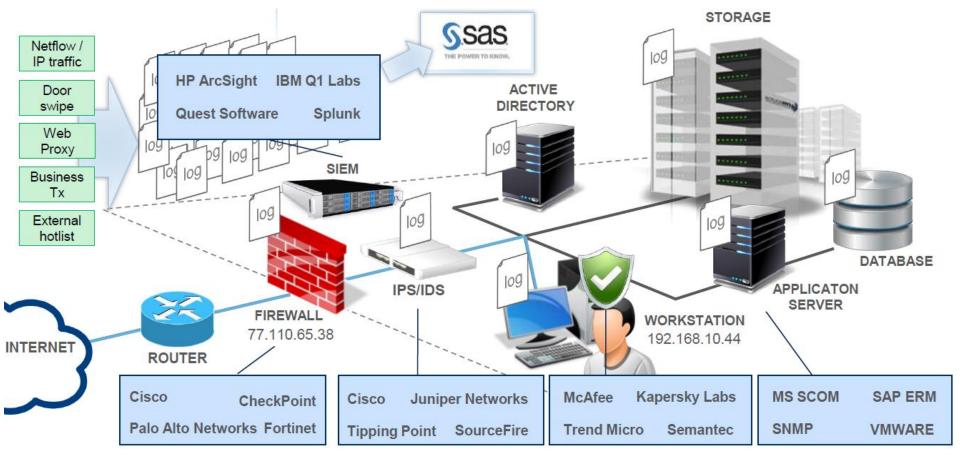
Security Brief Magazine. (2016). "Analyze This! Who's Implementing Security Analytics Now?" Available at https://www.sas.com/en_th/whitepapers/analyze-this-108217.html What data sources are available within your organization, should a security analytics program happen?


IP address

time stamp


destination port

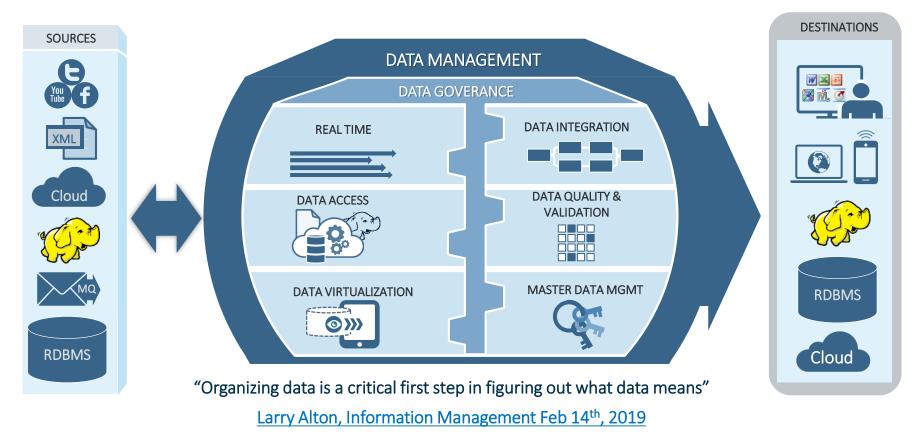
destination port


IP address

Security Data Management Challenge: Speed and Volumes

Many data sources... increasing data volumes

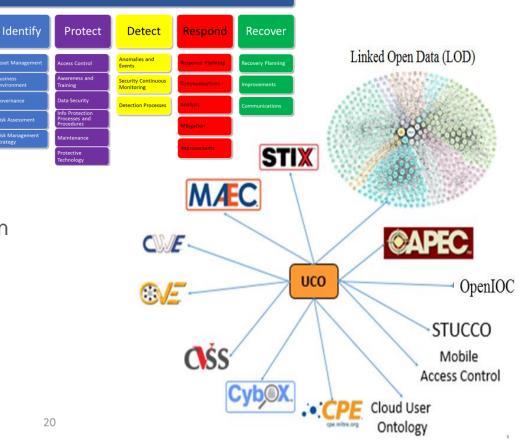
High false alerts... slow investigation processes



Data Engineering: Fusion, Quality and Delivery

Cybersecurity Frameworks & Ontologies

FRAMEWORKS


- MITRE Cyber Observable eXpression
- NIST Cybersecurity Framework
- Intrusion Kill Chain (Lockheed Martin)

ONTOLOGIES

- **DFAX** Digital Forensic Analysis eXpression
- **<u>CVE</u>** Cyber Intelligence Ontology
- ICAS Information Security (example)
- UCO / UCO (OWL)

Unified Cybersecurity Ontology

U.S. Cyber Incident Data Sharing Specifications

- Common Attack Pattern Enumeration and Classification (CAPEC): Structured framework for describing known tactics, techniques, and procedures (TPP) applied by adversaries.
- Cyber-investigation Analysis Standard Expression (CASE): Open standard ontology/specification language for sharing cybersecurity case investigation information
- Cyber Observable eXpression (CybOX): A semantic framework for describing objects and properties in the cybersecurity domain (merged into STIX).
- Incident Object Description Format (IODEF): Standard data format for the exchange of incident information between security teams.
- Integrated Cyber Analysis System (ICAS): A U.S. DARPA initiative for documenting infrastructure to aid attack forensics and tactical cyber defense incident response
- Malware Attribute Enumeration and Classification (MAEC): A semantic framework for describing structured malware behavior.
- OASIS Customer Information Quality (CIQ): A language for representing information about individuals and organizations.
- Structured Threat Information Expression (STIX): A structured language specification for describing cyber threat information so it can be shared, stored, and analyzed in a consistent manner. This initiative embeds or ties to several of the other initiatives listed and is overseen by the OASIS Cyber Threat Intelligence Technical Committee (OASIS, 2019).
- Unified Cyber Ontology (UCO): A common ontology to unify and represent disparate cybersecurity domain knowledge.
- Vocabulary for Event Recording and Incident Sharing (VERIS): A formal metrics framework for describing security incidents and their effects in a structured manner.

https://www.us-cert.gov/Information-Sharing-Specifications-Cybersecurity

CleansingIntegrationDiscovery

Ingest
Digest
Expel

LineageGovernanceSecurity

Whitepaper: A Comprehensive Approach to Big Data Governance, Data Management and Analytics

http://sww.sas.com/cosmos/a/cosmos-images/107968_0718.pdf

SAS-Hadoop Integration Tools SAS Interfaces to Hadoop

1) In-Database Processing with Hadoop

 $\underline{http://support.sas.com/documentation/cdl/en/acreldb/69580/HTML/default/viewer.htm\#n0kgg6z8c14ewmn1phdwdm5cp51i.htm$

2) SAS/ACCESS Interface to Hadoop

https://www.sas.com/en_ph/software/data-management/access-hadoop.html

3) SAS Data Loader for Hadoop (Hadoop ETL)

https://www.sas.com/en_us/software/data-loader-for-hadoop.html

White Paper: 'Eight Considerations for utilizing Big Data Analytics with Hadoop:

https://www.sas.com/en_us/offers/sem/tdwi-8-considerations-utilizing-big-data-analytics-with-hadoop-107015.html?gclid=CjwKEAjw07nJBRDG_tvshefHhWQSJABRcE-ZvRH45VIQzQ_iUmKsrj_jF8ftzNRHjdB9WyIxr9YQYBoCNyHw_wcB

Cybersecurity Data Sources

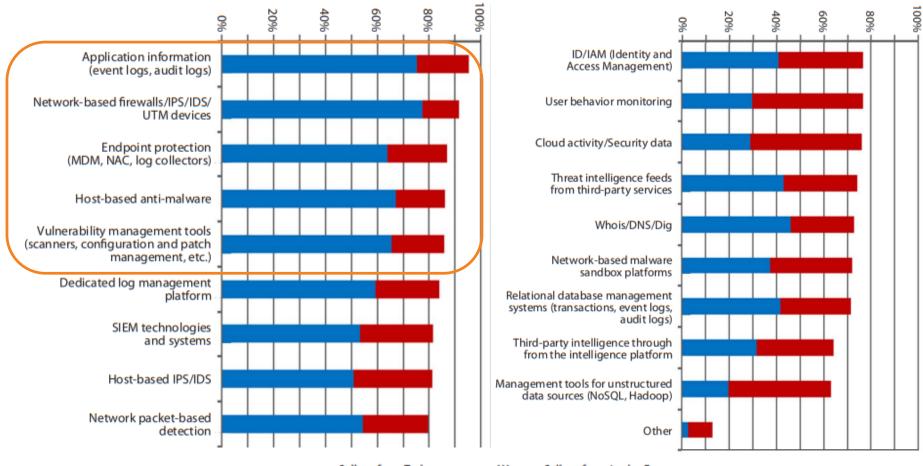
Common Cybersecurity Data Sources

CMDB

(internal configuration/asset catalogs)

- Intrusion detection/prevention system
- Vulnerability scans
- SIEM-generated
- Endpoint data
- NetFlow
- Network packets
- SaaS and cloud logs

DNS records


• Third-party reports

(threat intelligence/feeds e.g. STIX/TAXII)

- Network component-generated logs (firewall, router, bridge, DHCP server, proxy server, typical device types, and so on)
- Device configurations, rules, traffic

(firewall, router, switch)

- Contextual / 'demographic' data (organizational, user-demographic, and so on)
- SaaS and cloud logs

Collect from Today

Want to Collect from in the Future

Sourcing Own Data: Open-Source Distributions / Tools

<u>Suricata</u>

- Network threat detection engine
- Real time intrusion detection (IDS)
- Inline intrusion prevention (IPS)
- Network security monitoring (NSM)
- Flow and malware detection probe
- Integration with external systems (i.e., SIEMs, Splunk, ELK stack)
- Supported by non-profit foundation open source project (OISF)

<u>Bro</u>

- Network security monitoring
- Intrusion detection
- Signature detection
- Network traffic analysis
- Network discovery
- Active support from academia, research labs, and open source

Sourcing Own Data: Open-Source Distributions / Tools

<u>Kali Linux</u>

- Information gathering
- Vulnerability analysis
- Wireless attacks
- Web applications
- Exploitation tools
- Forensics tools
- Stress testing
- Sniffing & spoofing
- Password attacks
- Maintaining access
- Reverse engineering
- Reporting tools
- Hardware hacking

Security Onion

- Full packet capture
 - Netsniff-ng
- NW and host-based intrusion detection
 - NIDS, Bro IDS, HIDS
- Analysis tools
 - Sguil, Squertm Enterprise Log Search & Archive

What do we hope to extract from cybersecurity data?

What Do We Hope to Gain from Cybersecurity Data?

RULES & ALERTS (SIEM)

- Real-time status
 - Exceptions
 - Known indicators
- Processes / sequences
- Forensics
 - Changing status and order of processes and events
- Aggregate understanding
 - Complex indicators

DETECT, PREDICT, OPTIMIZE (ANALYTICS)

- Probabilistic 'behavioral' understanding
 - What is 'normal' as baseline?
 - Different time ranges / processes
 - Insights into and *between* various entities, categories layers, and levels (individual, group, domain, etc.)
- Emerging anomalies (exploration)
- Complex detection (case in aggregate)
- Quantifiable risk models
- Optimization
 - Match best resource to most pressing risks

Advanced Insights

Datasets for cybersecurity training, research, and development

Sources for Cybersecurity Research Data

- HoneyPot Project: <u>http://honeynet.org/challenges</u>
- LANL CSR Red Teaming: <u>https://csr.lanl.gov/data/cyber1/</u>
- CTU-13 CTU University, Czech Rep <u>https://mcfp.weebly.com/the-ctu-13-dataset-a-labeled-dataset-with-botnet-normal-and-background-traffic.html</u>
- SecRepo.com: <u>http://www.secrepo.com/</u>
- VizSec: <u>http://vizsec.org/data/</u>
- Data.gov Cyber Data Sets: <u>https://catalog.data.gov/dataset?tags=cybersecurity</u>
- Malware Traffic Analysis: <u>http://malware-traffic-analysis.net/</u>
- MIT Lincoln Laboratory IDS Data Sets: <u>https://www.ll.mit.edu/ideval/data/</u>
- Center for Applied Internet Data Analysis (CAIDA) Data Sets: http://www.caida.org/data/overview/
- Protected Repository for the Defense of Infrastructure Against Cyber Threats (PREDICT): <u>https://www.dhs.gov/publication/dhsstpia-006-protected-repository-defense-infrastructure-against-cyber-threats</u>
- NSA Cyber Defense Exercise Data Set: <u>https://www.iad.gov/iad/programs/cyber-defense-exercise/index.cfm</u>

Example Research Dataset: LANL CSR Red Teaming

LANL CSR Red Teaming: https://csr.lanl.gov/data/cyber1/

- 58 consecutive days of de-identified event data collected from five sources within Los Alamos National Laboratory's corporate, internal computer network
- 12 gigabytes compressed across five data elements
 - 1,648,275,307 events in total
 - 12,425 users
 - 17,684 computers
 - 62,974 processes
- Data sources include
 - Windows-based authentication events from individual computers and Active Directory servers;
 - **Process start and stop events** from individual Windows computers;
 - **Domain Name Service (DNS) lookups** as collected on internal DNS servers;
 - Network flow data as collected on at several key router locations
 - Set of well-defined **red teaming events** that present bad behavior within the 58 days

Example Research Dataset: LANL CSR Red Teaming

- "Lessons learned in cybersecurity data munging" (academic paper in progress)
- Block out some serious time...
- Don't underestimate latency (processing)
- Well, you could get a Hadoop/Elastic repository... but...
- Start small to develop an understanding: sample, sample, sample!
- Develop a 'theory' of the central entities of interest
 - Prepare to have your theory destroyed
 - i.e. "Computer" was likely an IP associated to a user and not e.g. MAC address (as a result, average of ~15 computers per user)
 - "Domain" more comprehensible (average of 3 per user)
- Importance of time epochs / time slices

Example Research Dataset: LANL – Extracting Features

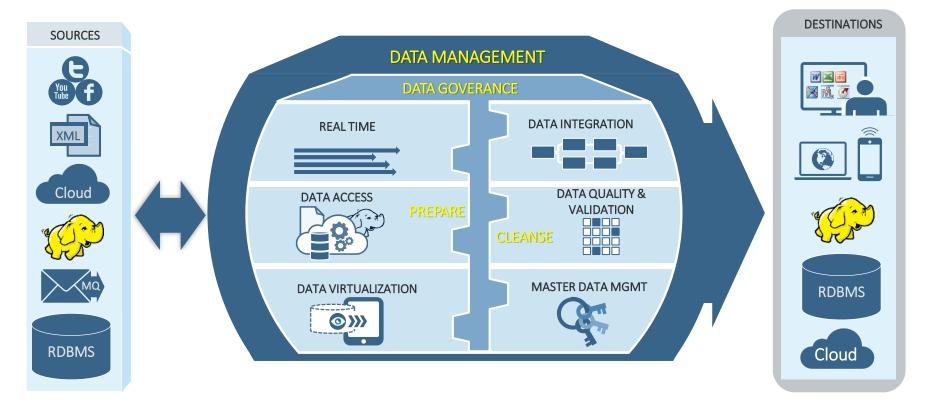
- 1. Time
- 2. Source user@domain
- 3. Destination user@domain
- 4. Source computer
- 5. Destination computer
- 6. Success/failure
- 7. Authentication type
- 8. Login type
- 9. Authentication orientation

#	FIELD	DESCRIPTION
1	time_auth	Cumulative second epoch (0-to-N)
2	DateTimeSAS	SAS date format
3	Hour_round	Cumulative hour epoch, rounded down (O-to-N)
4	Hour	Cumulative hour epoch (0-to-N)
5	Day	Cumulative day epoch, rounded (0-to-N)
6	DateTime	Julian date/time
7	DatePart	Julian date
8	TimePart	Time
9	Time_Code	1=0:00-5:59; 2=6:00-11:59; 3=12:00-17:59; 4=18:00-23:59
10	Weekend	Weekend day (0,1)?
11	Weekday	Day of week (1=Sun; 7 = Sat)
12	WeekNum	Week number of year
13	source_userdom	Full source user@domain (user\$ = comp acct; @DOM = AD)
14	source_user	Resolved source userid
15	source_user_comp	Computer source user account? (0,1)
16	source_dom	Resolved source domain
16		
17	source_dom_AD source_comp	Source domain via AD (DOM)? (0,1) Computer/device
18	source_comp	computer/device
	dest_userdom	Full destination user@domain (user\$ = comp acct; @DOM = AD)
20	dest_user	Resolved destination userid
21	dest_user_different	Different source-dest users (0,1)
22	dest_user_comp	Computer destination user account? (0,1)
23	dest_dom	Resolved destination domain
24	dest_dom_AD	Destination domain via AD (DOM)? (0,1)
25	dest_comp	Computer/device
26	dest_comp_different	Different source-dest computers (0,1)
27	dest_comp_TGT	TGT (ticket) authentication (0,1)?
28	dest_comp_USER	User authentication (0,1)?
29	suc_fail	Authentication fail (0,1)?
30	auth_type	Authorization type (categorical)
	authtype ?	0,1
32	authtype microsoft	0,1
	authtype_netware_a	0,1
34	authtype kerberos	0,1
-	authtype_ntlm	0,1
36	authtype_negotiate	0,1
37	authtype_wave	0,1
37	authtype_wave authtype_other	0.1
38		
	logon_type	Logon type (categorical)
40	logontype_batch	0,1
41	logontype_interactive	0,1
42	logontype_cached	0, 1
43	logontype_reminder	0, 1
44	logontype_network	0,1
45	logontype_nwcleartxt	0,1
46	logontype_service	0,1
47	logontype_unlock	0,1
48	logontype_newcred	0,1
49	auth_orient	Authorization orientation (categorical)
50	authorient_authmap	0,1
51	authorient_logoff	0,1
52	authorient_logon	0,1
53	authorient_screenlock	0,1
54	authorient screenunlock	0,1
55	authorient_tgs	0,1
22		0,1

Data Engineering

Cybersecurity Events

Irregular and Complex Events



Self-Service Visual Analytics

Data Engineering: Data Management Context

Data Handling (aka Data Wrangling or Munging)

- Cleansing
- Filtering
- Joining
 - (fusion / integration)
- Appending
- Transposing
- Transformations

- Deleting / hiding
- Interpolating
- Substituting
- Binning
- Clustering
- Reducing

SAS Data Management Taxonomy

Acquire and Discover	Import and profileQuery or join
Transform	TransformTranspose
Cleanse	Data quality transformationsDelete or hide
Integrate	 Query or join / perform merge operations Sort and de-duplicate / cluster / collapse / bin
Deliver	 Push or make available for pull

What is 'tidy' data?

Data scientists spend ~80% of their time 'cleaning' data...

- Tidy = 'shape' of data matches assumptions of analytics models
- Data formats e.g. vectors, tables, cube, timeseries, graphs
- Example: raw network traffic is unstructured, irregular time series with complex events (multiple variables with unclear dependencies) and contextual entities (e.g. what is a 'user'? is an IP atomic and persistent?)

ACTION	PURPOSE
Deduplication	Remove deduplicates
Extrapolation	Derive new variable (e.g. ratio)
Cast	Specify type (double, string, binary, etc.)
Binning	Reduce dimensionality via roll-up category
Imputation	Fill-in missing data
Join	Combine datasets
Aggregation	Group by (sum, count, max, min, avg)
Projection	Aggregate and reduce variables
Normalize	Reduce redundancy, linking key entities

Example: R Tidyverse

ggplot2

_

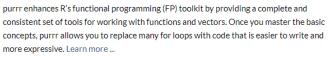
E

readr

ggplot2 is a system for declaratively creating graphics, based on The Grammar of Graphics. You provide the data, tell ggplot2 how to map variables to aesthetics, what graphical primitives to use, and it takes care of the details. Learn more ...

dplyr

dplyr provides a grammar of data manipulation, providing a consistent set of verbs that solve the most common data manipulation challenges. Learn more ...


tidyr

tidyr provides a set of functions that help you get to tidy data. Tidy data is data with a consistent form: in brief, every variable goes in a column, and every column is a variable. Learn more ...

readr

readr provides a fast and friendly way to read rectangular data (like csv, tsv, and fwf). It is designed to flexibly parse many types of data found in the wild, while still cleanly failing when data unexpectedly changes. Learn more ...

purrr

TIBBLE

stringr

purr

tibble is a modern re-imagining of the data frame, keeping what time has proven to be effective, and throwing out what it has not. Tibbles are data.frames that are lazy and surly: they do less and complain more forcing you to confront problems earlier, typically leading to cleaner, more expressive code. Learn more ...

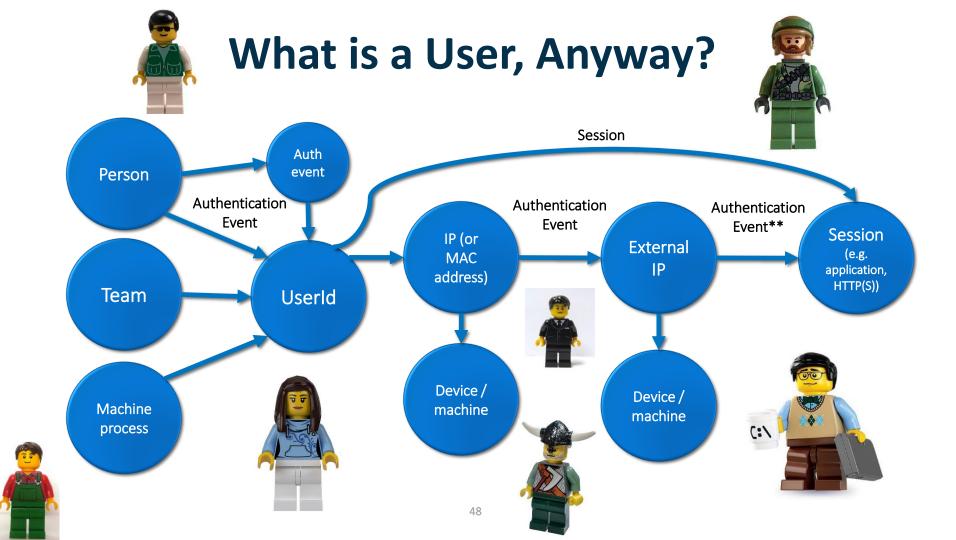
stringr

tibble

stringr provides a cohesive set of functions designed to make working with strings as easy as possible. It is built on top of stringi, which uses the ICU C library to provide fast, correct implementations of common string manipulations. Learn more ...

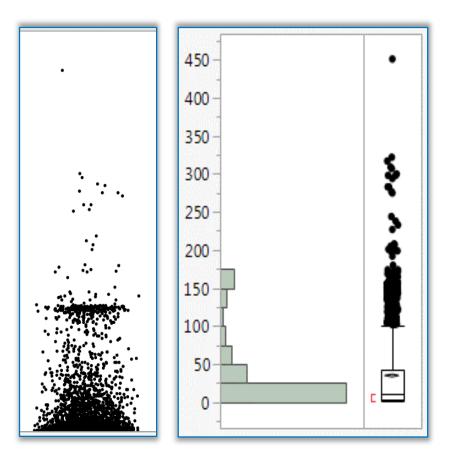
forcats

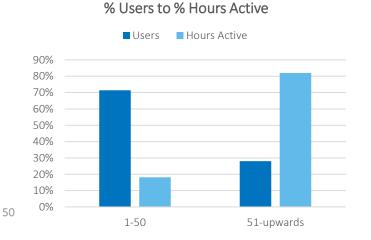
forcats provides a suite of useful tools that solve common problems with factors. R uses factors to handle categorical variables, variables that have a fixed and known set of possible values. Learn more ...


46

www.tidyverse.org

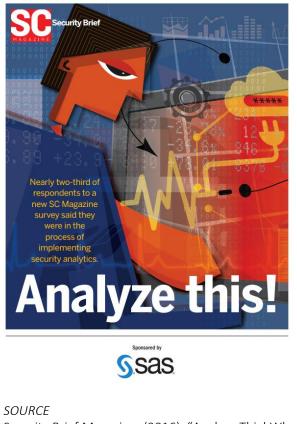
Feature Extraction

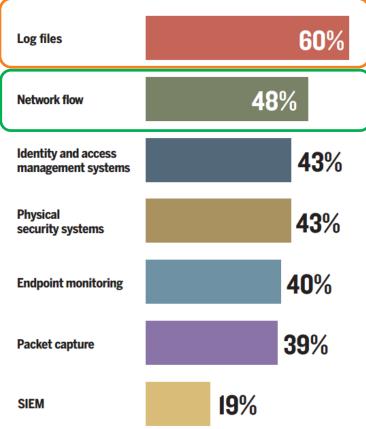



Feature Selection / Extraction

Understanding Network Behavioral Patterns

Pareto Principle


- 80/20% pattern in network-usage
- Outliers: multiple devices 24 hours online
- High correlation: hrs online and breadth of activities
- Pattern observed across multiple networks



Focused Data Source: NetFlow

Security Brief Magazine. (2016). "Analyze This! Who's Implementing Security Analytics Now?" Available at https://www.sas.com/en_th/whitepapers/analyze-this-108217.html What data sources are available within your organization, should a security analytics program happen?

NetFlow Data

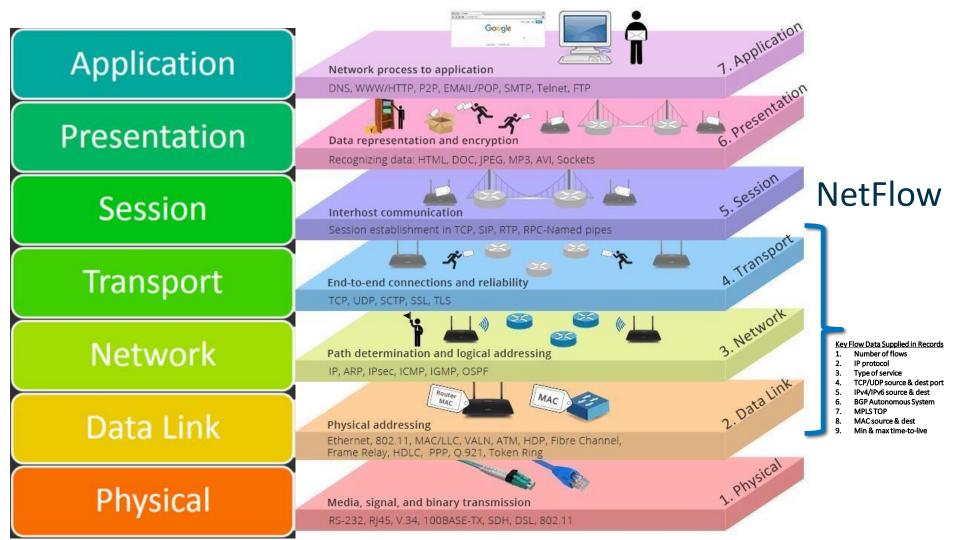
Date flow start Duration Proto Src IP Addr:Port Dst IP Addr:Port Flags Tos Packets Bytes Flows 2005-08-30 06:53:53.370 63.545 TCP 113.138.32.152:25 -> 222.33.70.124:3575 .AP.SF 0 62 3512 1 2005-08-30 06:53:53.370 63.545 TCP 222.33.70.124:3575 -> 113.138.32.152:25 .AP.SF 0 58 3300 1

 Top 10 flows ordered by bytes:
 Proto Src IP Addr:Port Dst IP Addr:Port Flags Tos Packets Bytes pps bps Bpp Flows

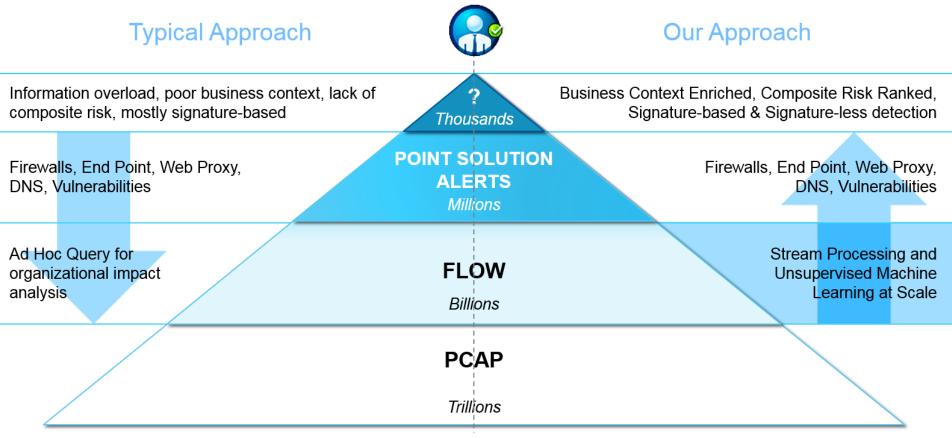
 2005-08-30
 06:50:11.218
 700.352
 TCP
 126.52.54.27:47303
 > 42.90.25.218:435
 0.1.4 M 2.0 G 2023
 5.6 M 1498
 1

 2005-08-30
 06:47:06.504
 904.128
 TCP
 198.100.18.123:54945
 > 126.52.57.13:119
 0
 567732
 795.1 M 627
 2.5 M 1468
 1

 2005-08-30
 06:47:06.310
 904.384
 TCP
 126.52.57.13:45633
 > 91.127.227.206:119
 0
 320710
 455.9 M 354
 4.0 M 1490
 1


 2005-08-30
 06:47:14.315
 904.448
 TCP
 126.52.57.13:45698
 > 91.127.227.206:119
 0
 320710
 455.9 M 354
 4.0 M 1490
 1

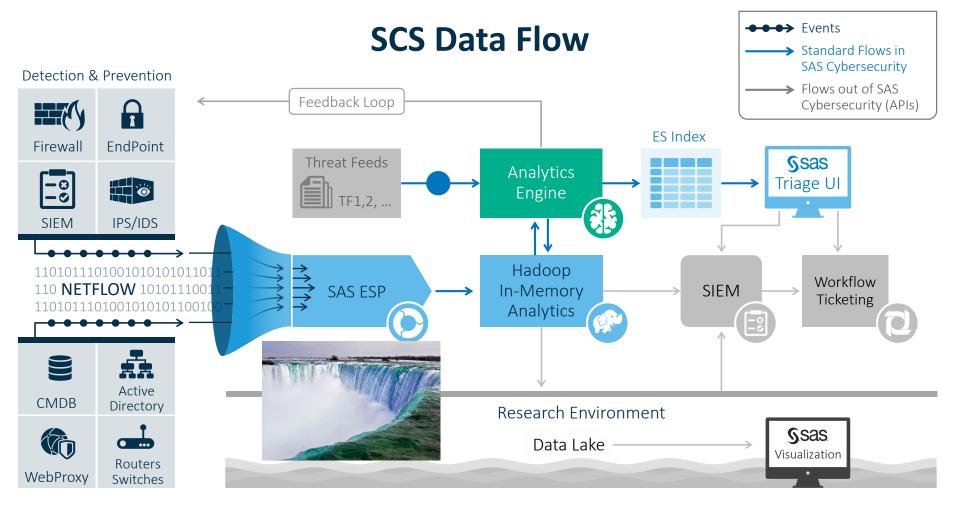
 2005-08-30
 06:47:14.315
 904.448
 TCP
 126.52.57.13:45629
 > 91.127.227.206:119
 0
 317764
 451.5 M 351
 4.0 M 1489
 1


 2005-08-30
 06:47:14.315
 904.448
 TCP
 126.52.57.13:45675
 > 91.127.227.206:119
 0
 317611
 451.5 M 351
 4.0 M 1489
 1

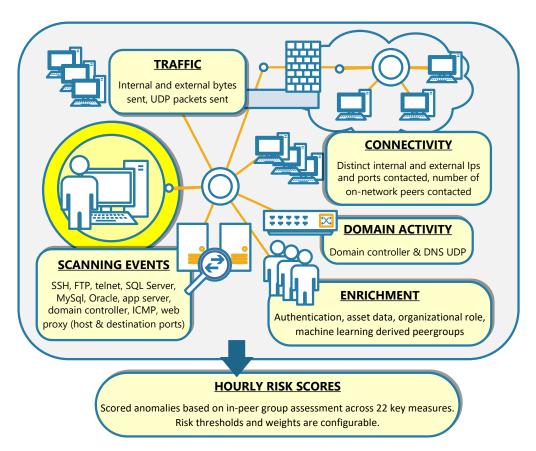
 <td

NFDUMP https://github.com/phaag/nfdump

Data Volumes and Security Challenge



Network Flow (NetFlow) Analysis Tools

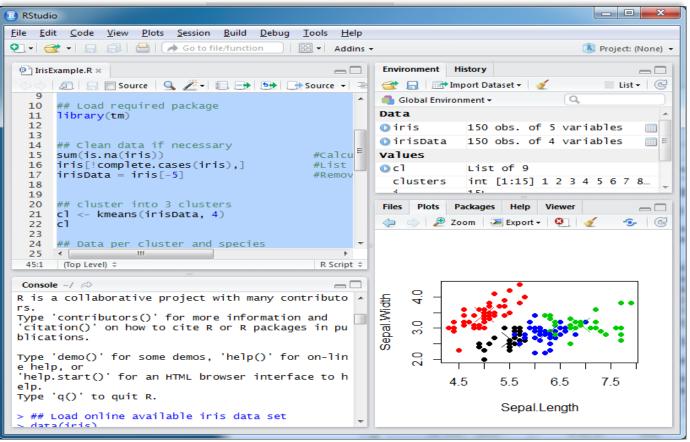

• Silk (CERT)

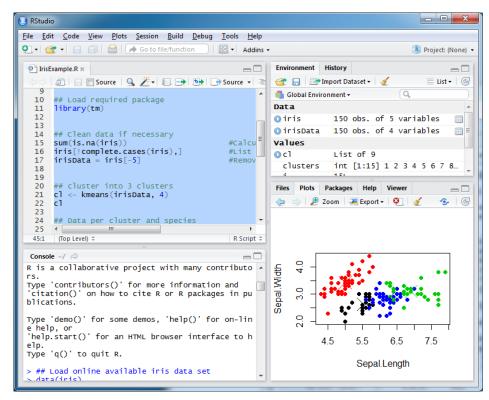
- <u>NFDUMP</u>
- <u>Scrutinizer</u>
- <u>Cisco NTA</u>
- Bro (complement)
- <u>SAS Cybersecurity</u>

start Duration Proto Src IP Addr:Port Dst IP Addr:Port Flags Tos Packets Bytes pps bps Bpp Flows Date flow 2005-08-30 06:50:11.218 700.352 TCP 126.52.54.27:47303 -> 42.90.25.218:435 0 1.4 M 2.0 G 2023 5.6 M 1498 1 2005-08-30 06:47:06.504 904.128 TCP 198.100.18.123:54945 -> 126.52.57.13:119 0 567732 795.1 M 627 2.5 M 1468 1 2005-08-30 06:47:06.310 904.384 TCP 126.52.57.13:45633 -> 91.127.227.206:119 0 321148 456.5 M 355 4.0 M 1490 1 2005-08-30 06:47:14.315 904.448 TCP 126.52.57.13:45598 -> 91.127.227.206:119 0 320710 455.9 M 354 4.0 M 1490 1 2005-08-30 06:47:14.316 904.448 TCP 126.52.57.13:45629 -> 91.127.227.206:119 0 317764 451.5 M 351 4.0 M 1489 1 2005-08-30 06:47:14.315 904.448 TCP 126.52.57.13:45634 -> 91.127.227.206:119 0 317611 451.2 M 351 4.0 M 1489 1 2005-08-30 06·47·06 313 904 384 TCP 126 52 57 13·45675 -> 91 127 227 206·119 0 317319 451 0 M 350 4 0 M 1490 1 2005-08-30 06·47·06 313 904 384 TCP 126 52 57 13·45619 -> 91 127 227 206·119 0 314199 446 5 M 347 3 9 M 1490 1 2005-08-30 06:47:06.321 790.976 TCP 126.52.54.35:59898 -> 132.94.115.59:2466 0 254717 362.4 M 322 3.7 M 1491 1 2005-08-30 06:47:06.504 904.128 TCP 198.100.18.123:54945 -> 126.52.57.13:119 0 567732 795.1 M 627 2.5 M 1468 1 2005-08-30 06:47:06.310 904.384 TCP 126.52.57.13:45633 -> 91.127.227.206:119 0 321148 456.5 M 355 4.0 M 1490 1 2005-08-30 06·47·14 315 904 448 TCP 126 52 57 13·45598 -> 91 127 227 206·119 0 320710 455 9 M 354 4 0 M 1490 1 2005-08-30 06·47·14 316 904 448 TCP 126 52 57 13·45629 -> 91 127 227 206·119 0 317764 451 5 M 351 4 0 M 1489 1 2005-08-30 06:47:14.315 904.448 TCP 126.52.57.13:45634 -> 91.127.227.206:119 0 317611 451.2 M 351 4.0 M 1489 1 2005-08-30 06:47:06.313 904.384 TCP 126.52.57.13:45675 -> 91.127.227.206:119 0 317319 451.0 M 350 4.0 M 1490 1 2005-08-30 06:47:06.313 904.384 TCP 126.52.57.13:45619 -> 91.127.227.206:119 0 314199 446.5 M 347 3.9 M 1490 1 2005-08-30 06·47·06 321 790 976 TCP 126 52 54 35·59898 -> 132 94 115 59·2466 0 254717 362 4 M 322 3 7 M 1491 1

SAS Cybersecurity - Summary Data

Exploring and Extracting Data



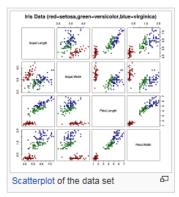

Introducing tools for practical exercise

Data Analysis and Exploration R / R Studio

Example: Feature Engineering - PCA and Clustering with R

http://www.idvbook.com/teachingeaid/data-sets/the-iris-data-set/

https://en.wikipedia.org/wiki/ Iris flower data set


Iris flower data set

From Wikipedia, the free encyclopedia

The Iris flower data set or Fisher's Iris data set is a multivariate data set

introduced by Ronald Fisher in his 1936 paper *The use of multiple* measurements in taxonomic problems as an example of linear discriminant analysis.^[1] It is sometimes called **Anderson's** *Iris* data set because Edgar Anderson collected the data to quantify the morphologic variation of *Iris* flowers of three related species.^[2] Two of the three species were collected in the Gaspé Peninsula "all from the same pasture, and picked on the same day and measured at the same time by the same person with the same apparatus".^[3]

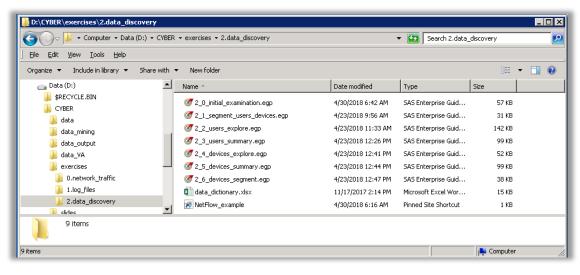
The data set consists of 50 samples from each of three species of *Iris* (*Iris setosa*, *Iris virginica* and *Iris versicolor*). Four features were measured from each sample: the length and the width of the sepals and petals, in centimetres. Based on the combination of these four features, Fisher developed a linear discriminant model to distinguish the species from each other.

۶Ū

Introducing tools for practical exercise

Data Analysis, Transformation, Analytics

SAS Enterprise Guide

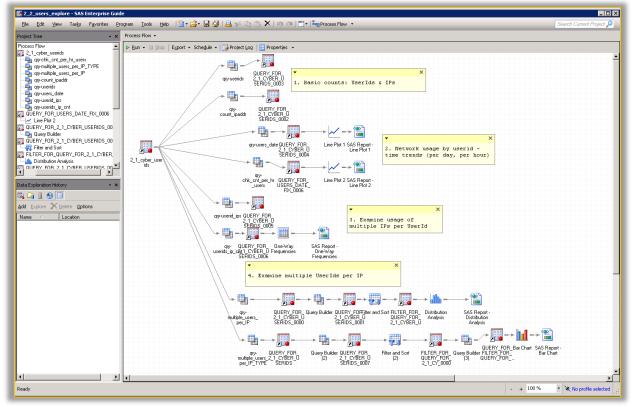

SAS Enterprise Guide – user-friendly interface to SAS Analytics:

- Preliminary data analysis
- Converting data into analytics-ready variables
- Creating workflows that structure and automate a complex set of procedures
- Performing statistical analysis, analytics, and machine learning
- Integrating SAS code

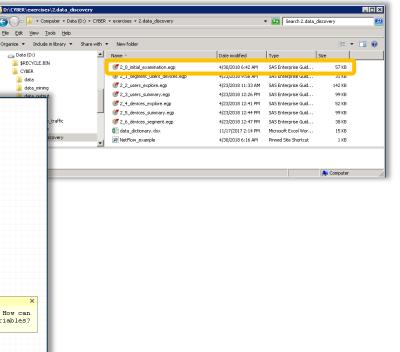
Project Tree 	
Project Tree	Workspace Area
 G Refresh Disconnect Stop Servers 	
	Resourses Pane

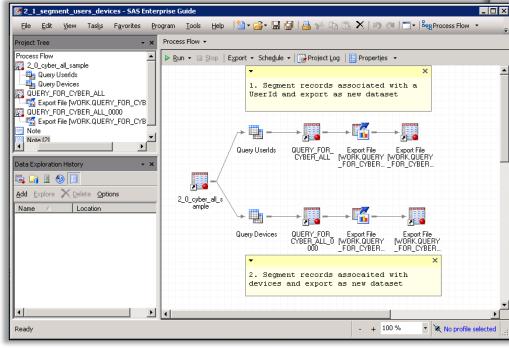
• Data

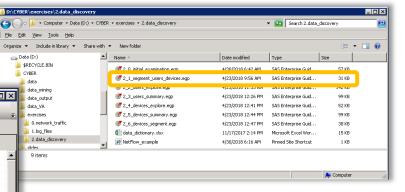
- ~1 million hourly records over 24 days (March-April 2017)
- Hourly summarized NetFlow measures by device IP address (some with bound UserId)
- Tool
 - SAS Enterprise Guide
- Goals
 - Profile dataset
 - Exploratory analysis
 - Segment records
 - Extract (meta-) measures
 - Roll-up a 'meaningful' summarized data set



Exploring and extracting cybersecurity data


Data Quality as Foundation for Analytics Data Handling for Cybersecurity Data


G


D:\@CYBER\2.DATA\data explore 0. ~1 Mil hourly NetFlow summary records cyber_all 1. How many records per day? Frequencies 2. How many UserId hourly records? QUERY FOR Query UserIds How many DISTINCT UserIds? CYBER ALL C 7 3. How do we segment devices from UserId devices? Query QUERY FOR What types and how many devices are there? DeviceTypes CYBER_ALL_0 One-Way 4. How can a reduced random sample help us? How can Frequencies we characterize the distributions of the variables? BANDBANDOM Distribution Bandom SAMPLECYBE Sample Analysis B ALL 5. Based on these insights, how might we segment the data to gain a deeper understanding of user and device network usage?

1. '2_0_initial_examinination.egp

 Open '2_1_segment_user_devices.egp' D:\@CYBER\2.DATA\data_explore

D:\CYBER\exercises\2.data_discovery

Search 2.data_discovery

Size

57 KB

142 KB

52 KB

99 KB

38 KB

15 KB

1 KB

Computer

Type

SAS Enterprise Guid..

CAC Colonia Cold

SAS Enterprise Guid...

SAS Enterprise Guid...

SAS Enterprise Guid.

SAS Enterprise Guid.

SAS Enterprise Guid.

Microsoft Excel Wor.

Pinned Site Shortcut

Date modified

4/30/2018 6:42 AM

4/23/2018 11:33 AM

4/23/2018 12:26 PM

4/23/2018 12:41 PM

4/23/2018 12:44 PM

4/23/2018 12:47 PM

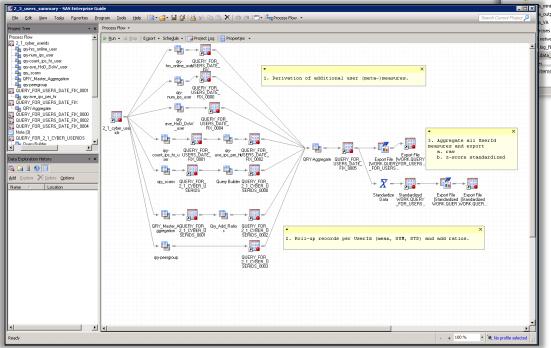
11/17/2017 2:14 PM

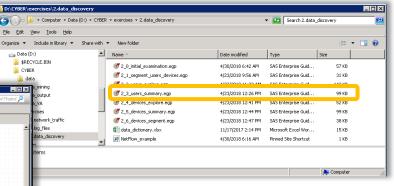
4/30/2018 6:16 AM

1000000.0.0.0.0

0

10 - 11 🔞


3. Open '2_2_user_explore.egp' G 😓 🍌 🔹 Computer 🔹 Data (D:) 🔹 CYBER 🔹 exercises 🔹 2. data discovery View Tools Help Ele Edit Organize
 Include in library
 Share with
 New folder D:\CYBER\exercises\2.data discovery 👝 Data (D:) ▲ Name \$RECYCLE.BIN 🕼 2 0 initial examination.eqp CYBER 🐼 2_2_users_explore - SAS Enterprise Guid - 🗆 × 团 2 2 users explore.eap Elle Edit View Tasks Favorites Program Iools Help 🔛 🖓 🖬 🕼 🖓 🗈 🕾 🗙 🕬 🔍 🗂 🕯 🗞 Kases Flow 🔹 🕼 2 3 users summary.equ Project Tree Process Flow 🜌 2 4 devices explore.eap Process Flow Run * Stop | Export * Schedule * | Project Log | E Properties * 2 5 devices summary.egp 2_1_cyber_userids gry-chk_cnt_per_hr_users k traffi 🜌 2.6. devices seament.ean . gry-multiple_users_per_IP_TYPE data_dictionary.xlsx ary-multiple_users_per_IP UERY_FOR_ 1_CYREB_U qry-userids NetFlow example ay count_ipaddr SERIDS_0003 1. Basic counts: UserIds & IPs 🚛 qıy-userids 🗛 qıy-users_date Щ. . 📫 qıy-userid_ips gry-userids_ip_cnt OLIEBY FOR QUERY_FOR_USERS_DATE_FIX_0006 count inaddr 2 1 CYBER U SERIDS MIC Line Plot 2 QUERY_FOR_2_1_CYBER_USERIDS_00 A -> 🖺 Wa --Query Builder QUERY_FOR_2_1_CYBER_USERIDS_00 qry-users_date QUERY_FOR Line Plot 1 SAS Report - Filter and Sort 2. Network usage by userid -Line Plot 1 2.0 WAFE 2 1 CYBEH_U SERIDS_0004 FILTER_FOR_QUERY_FOR_2_1_CYBER time trends (per day, per hour) 2_1_cyber_use In Distribution Analysis 1 CLIERY FOR 2.1 CYPER LISERING ----chk_cnt_per_hr QUERY_FOR_ users USERS DATE Line Plot 2 SAS Report Line Plot 2 Data Exploration History FIX 000E 🖏 🔓 🎚 🗐 🗍 → 🛄 . Add Explore 🔀 Delete Options Name / Location gry-userid_ips QUERY_FOR 3. Examine usage of FRIDS MOR multiple IPs per UserId 1.0 grv- QUERY FOR One-Way SAS Report userids_ip_c2t1_CYBER_U Frequencies SERIDS_0006 One-Way 4. Examine multiple UserIds per IP S 🛄 ter and Sort FILTER FOR Queru Builder QUERY Distribution SAS Report ary ultiple_users Analysis per II SAS Report Bar Chart FILTER FOR Guery Builder FILTER FOR QUEBY FOR Query Builder QUERY FOR Filter and Sort multiple_users QUERY FOR 2 1 CY 0000 QUERY_FOR_ [3] 1 - + 100 % Ready No profile selected


G

Edit

data

Open '2_3_user_summary.egp' 4. D:\CYBER\exercises\2.data discovery

Hands-on NetFlow Data Exploration / Extraction

D:\CYBER\exercises\2.data_discovery

- 🗆 X

5. Open '2 4 devices explore.egp' Search 2.data_discovery G 😓 🍌 🔹 Computer 🔹 Data (D:) 🔹 CYBER 🔹 exercises 🔹 2. data discovery View Tools Hel Ele Edit Organize
 Include in library
 Share with
 New folder 1 - 🔟 🔞 D:\CYBER\exercises\2.data discovery 👝 Data (D:) ▲ Name Date modified Size Type \$RECYCLE.BIN 🕼 2 0 initial examination.eqp 4/30/2018 6:42 AM SAS Enterprise Guid... 57 KB CYBER 2 1 seament users devices.eap 4/23/2018 9:56 AM SAS Enterprise Guid... 31 KB 🚹 data 团 2 2 users explore.eap 4/23/2018 11:33 AM SAS Enterprise Guid... 142 KB data mining **7** 2 🔯 2 4 devices explore - SAS Enterprise Guide _ 🗆 × 🜌 2 4 devices explore.eap 4/23/2018 12:41 PM SAS Enterprise Guid.. 52 KB Eile Edit View Tasks Favorites Program Iools Help ڭ 🕻 🚰 🔛 🕼 😕 🖄 🗙 🔊 🕬 👘 🖓 📩 Search Current Proiect 🔎 2.5 devices summary.edb 4/23/2018 12:44 PM SAS Enterprise Guid. 99 KB 3 2_6_devices_segment.egp 4/23/2018 12:47 PM SAS Enterprise Guid. 38 KB Process Flow -- X Project Tree data_dictionary.xlsx 11/17/2017 2:14 PM Microsoft Excel Wor. 15 KB Process Flow 🕨 Run 🔹 🗉 Stop | Export 👻 Schedule 👻 🎇 Project Log | 🧮 Properties 👻 NetFlow example 4/30/2018 6:16 AM Pinned Site Shortcut 1 KB 2_1_cyber_devices 🖷 qry-hrs_online_device 🖷 qry-HoD_DoW_dev 📲 qry_Num_IPs_Dev_Type Computer 🖷 qry_Num_IPs 71 10 🕮 gry Num IPs_Net_Type qry_Num_IPs QUERY FOR QUERY_FOR_DEVICES_DATE_FIX 1 CYBER D EVICES 0000 QUERY_FOR_DEVICES_DATE_FIX_0003 Note qry_Num_IPs_N QUERY_FOR Explore devices: 2 1 CYBER et_Type a) Number of distinct device IPs EVICES 0001 2 1 cyber dev b) Number of distinct IPs per type (does each IP have a unique type?) Data Exploration History - X c) Number distinct IPs per TYPE 🖪 🔓 🛛 🕘 🔲 QUERY FOR gry Num IPs D d) Total hours online per IP device 2 1 CYBER D ev_Type e) Average time-of-day and weekday/weekend per IP device Add Explore X Delete Options EVICES (what might this say about the 'device') Location Name hrs_online_devi DEVICES DA HoD Dow dev DEVICES DAT • - + 100 % No profile selected Ready

Hands-on NetFlow Data Exploration / Extraction

Open '2_5_devices_summary.egp' 6. D:\CYBER\exercises\2.data discovery

> qry_DeviceType QUERY_FOR 2 1 CYBER EVICES 000

Project Tree

Process Flow

2_1_cyber_devices gry-hrs_online_device gry-HoD_DoW_dev 🖣 qry_ScanEvents

ary_MEASURE

gry_NW_Type

🕮 qryJoin

🛶 gry_DeviceType

B gry_Scan_Rollup

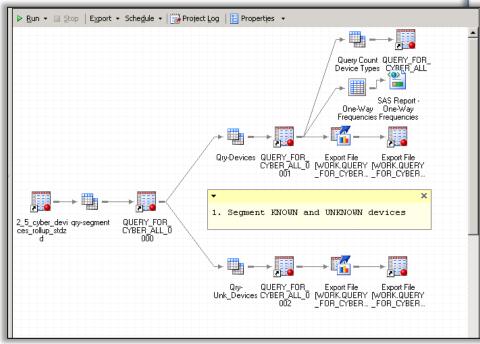
Data Exploration History

Add Explore X Delete Options

Name 🛆 Location

强 🕞 🛛 🚳 🔲

 Search 2.data_discovery G Computer + Data (D:) + CYBER + exercises + 2.data discovery View Tools Hel Ele Organize 👻 Include in library 💌 Share with 💌 New folde 1 - 🔟 🔞 👝 Data (D:) ▲ Name Date modified Size Туре \$RECYCLE.BIN 🕼 2 0 initial examination.eqp 4/30/2018 6:42 AM SAS Enterprise Guid... 57 KB CYBER 🕼 2 1 seament users devices.eap 4/23/2018 9:56 AM SAS Enterprise Guid.. 31 KB 🔒 data 团 2 2 users explore.eap 4/23/2018 11:33 AM SAS Enterprise Guid... 142 KB 🍌 data_mining 🖉 2 3 users summarv.eop 4/23/2018 12:26 PM SAS Enterprise Guid... 99 KB 🔒 data output 2 4 devices explore.equ 4/23/2018 12:41 PM 52 KB SAS Enterprise Guid data_VA 99 KB 🐼 2_5_devices_summary - SAS Enterprise Guide devices summary.egp 4/23/2018 12:44 PM SAS Enterprise Guid. File Edit View Tasks Favorites Program Tools Help 🎦 🏹 🎲 🔛 🗇 📇 🏏 🗈 🚓 🗙 📁 🗇 👘 🔭 😓 Process Flow 🔹 dictionary, xlsx 11/17/2017 2:14 PM Microsoft Excel Wor. 15 KB * X Process Flow + 1 KB 4/30/2018 6:16 AM Pinned Site Shortcut low example . Run • Stop | Export • Schedule • | Project Log | E Properties • Computer QUERY FO hrs online devi DEVICES DAT 1. Derivation of additional Device (meta-)measures. QUERY FOR DEVICES DATE FIX QUERY_FOR_DEVICES_DATE_FIX_0003 QUERY_FOR_2_1_CYBER_DEVICES qry-HoD_DoW_dev QUERY FOR 2 1 CYBER DEVICES OO • . 3. Aggregate all Device measures and export - × 2_1_cyber_dev a. raw Export File b. z-score standardized qry_ScanEve@UERY_FOR_qry_Scan_RoluQUERY_FOR aryJoin QUERY FOR Export File 2_1_CYBER_D 2 1 CYBER I EVICES 0002 DEVICES_DAT WORK.QUERY FOR DEVIC. D **FVICES** FOR DEVIC qry_AddDevice QUERY_FOR DEVICES DAT > 🛄 Export File gry MEASURE QUERY_FO Export File Standardize Standardizer 2 1 CYBER D EVICES_0000 Standardized WORK.QUER arv NW Type QUERY FO 1 CYBER EVICES 0001 2. Roll-up records per Device (mean, SUM, STD) and add ratios.


- + 100 %

X No profile selected

D:\CYBER\exercises\2.data_discover

Hands-on NetFlow Data Exploration / Extraction

7. Open '2_6_devices_segment.egp' D:\CYBER\exercises\2.data_discovery

D:\CYBER\exercises\2.data_di	scovery					_ 🗆 ×
🔾 🗢 📕 🔹 Computer 🕶 Dat	a (D:) 🔻 CYBER	 exercises + 2.data_discovery 		🔹 🔯 Search 2.data_	discovery	2
<u>Ele Edit View T</u> ools <u>H</u> elp						
irganize 👻 Include in library 👻	Share with	 New folder 			9== +	· 🔟 🔞
👝 Data (D:)	-	Name ^	Date modified	Туре	Size	
\$RECYCLE.BIN		2_0_initial_examination.egp	4/30/2018 6:42 AM	SAS Enterprise Guid	57 KB	
CYBER data		Ø 2_1_segment_users_devices.egp	4/23/2018 9:56 AM	SAS Enterprise Guid	31 KB	
data mining		Ø 2_2_users_explore.egp	4/23/2018 11:33 AM	SAS Enterprise Guid	142 KB	
data_output		Ø 2_3_users_summary.egp	4/23/2018 12:26 PM	SAS Enterprise Guid	99 KB	
🔒 data_VA		Ø 2_4_devices_explore.egp	4/23/2018 12:41 PM	SAS Enterprise Guid	52 KB	
exercises		2.5 devices summary em	4/23/2018 12:44 DM	SAS Enterprice Guid	99.VR	
0.network_traffic		Ø 2_6_devices_segment.egp	4/23/2018 12:47 PM	SAS Enterprise Guid	38 KB	
1.log_files		Mill data_dictionary.xisx	11/17/2017 2:14 PM	MICrosoft Excel Wor	15 KB	-
2.data_discovery		剩 NetFlow_example	4/30/2018 6:16 AM	Pinned Site Shortcut	1 KB	
9 items						
6					🔁 Computer	

SAS Data Management

Overview of SAS data management approaches

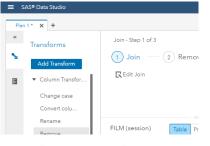
Traditional Data Management

Traditional Data Management - Highly Managed

Users: ETL Developers, IT Users, Data Stewards,

Example blog post – structured data management challenges

https://sctr7.com/2014/06/27/the-cutting-edge-network-analytics-for-financial-fraud-detection-and-mitigation/

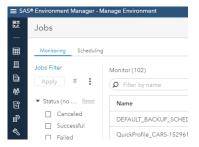

Traditional Data Management Ad-hoc Data Preparation

Data Integration & Quality	Data Governance	Data Preparation
Extract, Transform, Load	Glossary Auditing Lineage	Self-service Wrangling Blending
Traditional Data Management - Users: ETL Developers, IT Users	0, 0	Ad-hoc Data Prep - Very Flexible Users: Data Scientists & Business Users/Analysts

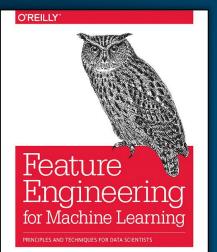
SAS Data Preparation Suite

Available	Data Sou	rces	> 🗆	FILM_LIS	T	
			-	🔡 Details	₿-₿ Sample Data	I
<u>±</u> ∓	* 5	Ø	:	Report 01/29/	18 11:43 AM	
▼ DM_PC	GDVD		2	Column	Uni	que
ACTOR			1	▲ actors	99% (996)
ACTOR_I	NFO			▲ catego	<u>ry</u> 1%(16)	
ADDRESS	5			\Lambda descrip	tion 100%	(997)
CATEGO	RY			€ fid	100%	
CITY						
COUNTR	v			🕀 length	14% (14	0)

Manage Data



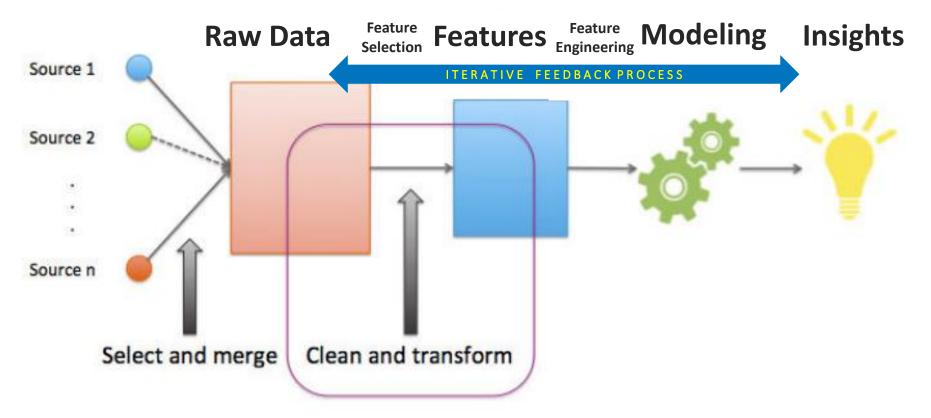
Prepare Data


Projects Recent	View R	eports	Develop SA	S Code	Pre
Projects					
					5
					Z
2018 Priorities	:	Cont	actCleanup	:	
Date modified: 6/6/18		Data	nodified: 6/6/	18	

Organize Data Projects

SAS® Lineage Viewer	
CUSTOMERS 🛛 🔛 Film Plan 🛽	film_actor 🛛
File 🔻 Object 🔻 View 🔻	ы 🖂 📰
	DM_PG0VD
Explore Line	eage

Monitor Jobs



Alice Zheng & Amanda Casari

Feature Engineering

Feature Selection, Extraction, Engineering

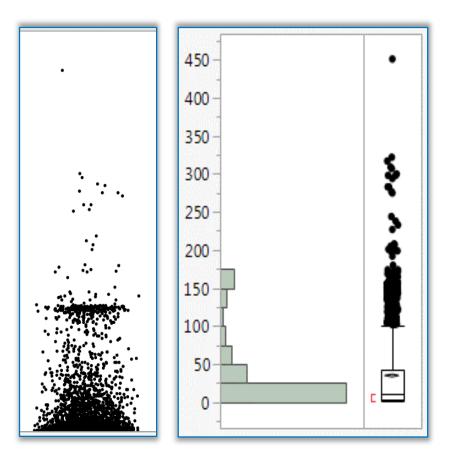
SOURCE: Alice Zheng, Amanda Casari. 2016. Feature Engineering for Machine Learning Models. O'Reilly Media.

Why invest the effort in feature extraction and selection for cybersecurity data?

Why Feature Extraction / Selection?

- Data overload -> reduction of dataset
- Poor data quality -> refinement
- Unlinked data -> associations
- Lack of context -> link assumptions
- Model efficacy -> target to phenomenon

https://science.sciencemag.org/content/343/6176/1203.full



Guidance based on practical learnings


Feature Selection / Extraction

Understanding Network Behavioral Patterns

Pareto Principle

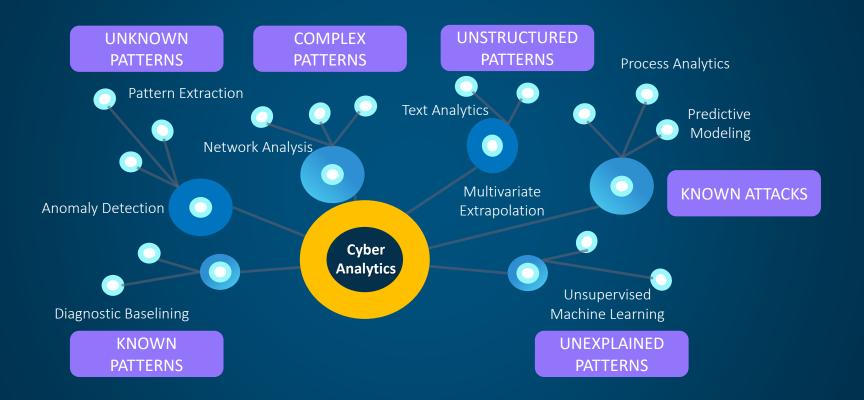
- 80/20% pattern in network-usage
- Outliers: multiple devices 24 hours online
- High correlation: hrs online and breadth of activities
- Pattern observed across multiple networks

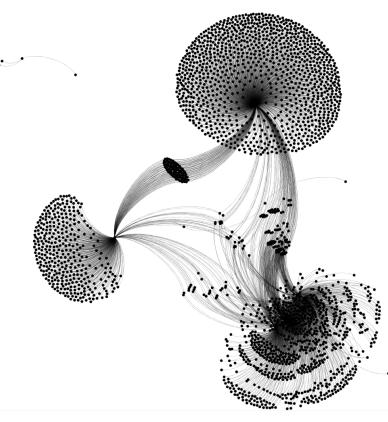
Feature Extraction

Ratios as Key Measures

Ratios of key are possibly more indicative of threats than single point measures... Examples

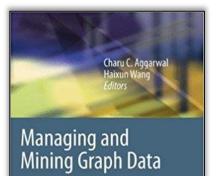
- Ratio of total data flows per hour TO unique destination IPs
 - Measures nearing high of 1:1 would be threat indicator of scanning activities.
- Ratio of unique internal destination IPs TO unique external IPs
 - Low might be threat indicator, perhaps bot net data exfiltration.
- Ratio of unique destination ports TO unique source ports
 - Low would generally be considered a threat, as might indicate a compromised system engaging in vulnerability surveillance across a range of outgoing ports to compromise a new system at a particular port.

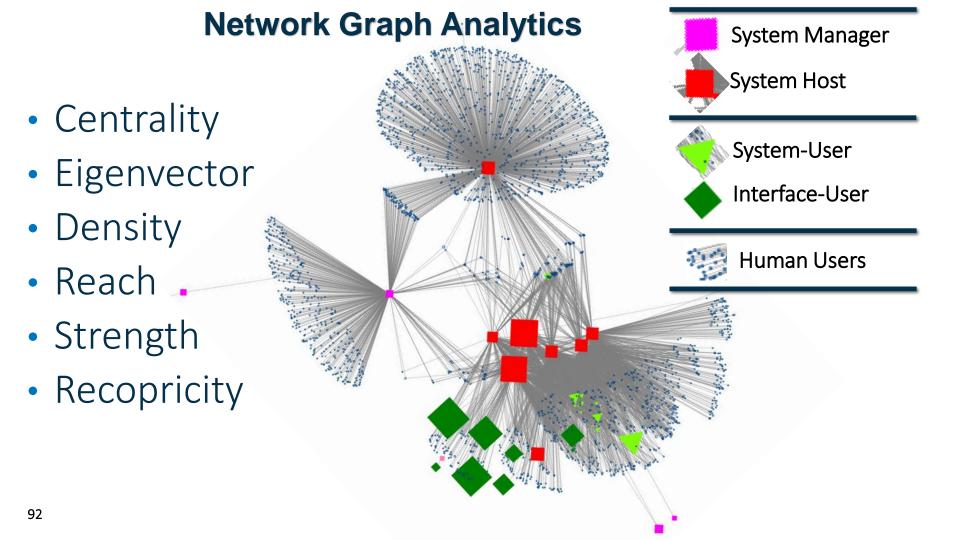


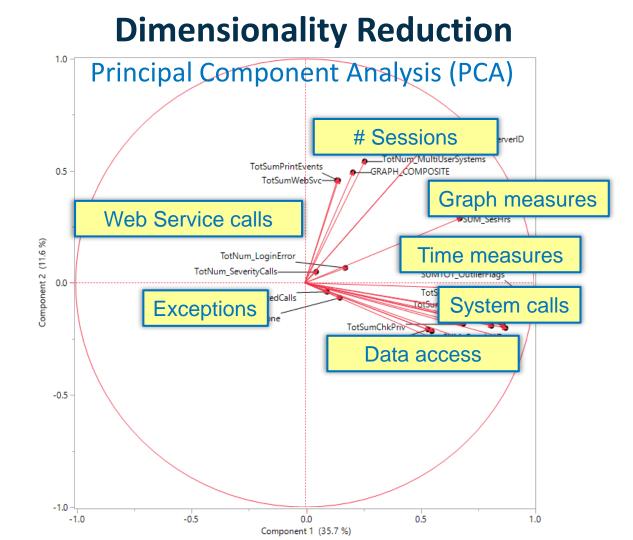

Advanced Insights

Insights into feature engineering

CSDS: Diverse Analytics Toolkit

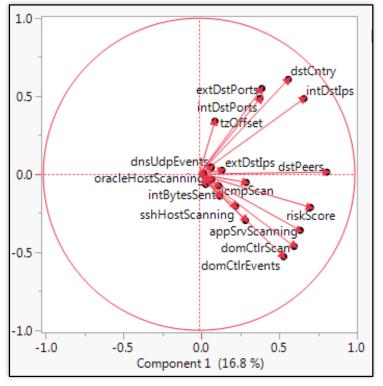



Feature Extraction: Advanced Measures Network 'Graph' Measures



Example 'Graph' Measures

- Centrality
- Eigenvector
- Density
- •: Reach
- Strength
- Recopricity



Feature Selection: Advanced Methods

Seeking Connections Amongst Variables

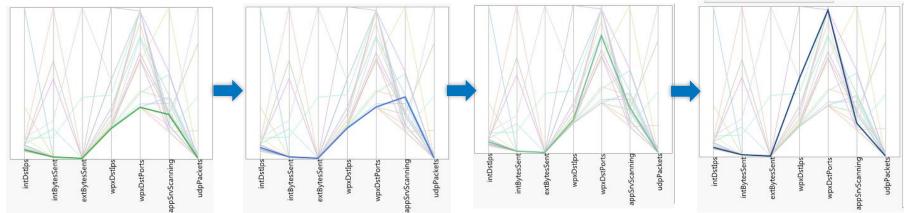
- Examining relationships between variables -> potentially aggregating measures
- Example: correlation, binning, Variable Clustering, Principal Component Analysis (PCA)



ppSrvScanning 0.687702 0.047363 0.217468 0.028911 lomCtlrEvents 0.666550 -0.005557 -0.073093 -0.004361 lskScore 0.642339 0.222107 0.055108 0.132822 lskPeers 0.630177 0.415476 0.282405 0.012351 glSeverHostScanning 0.221443 0.008744 0.01453 0.011453 cmpScan 0.201444 0.150965 0.028903 0.010696 elnetScanning 0.135024 0.004425 -0.012693 0.007054 ntBytesSent 0.102295 0.031144 -0.013843 0.037132 nysqlServerHostScanning 0.052490 0.001920 0.024752 -0.001362 vracleHostScanning 0.052490 0.001920 0.024752 -0.001362 vracleHostScanning 0.027760 0.516245 0.004452 -0.001254 ntDstIps 0.207460 0.891775 -0.00323 -0.013777 0.06637 0.704567 0.516245 0.009468 2.013777 0.06637	Factor Analysis on Co		s with 4 Fa	ictors: Ma	ximum Like
IomCtIrScan 0.688720 0.044397 0.022447 0.006464 ppSrvScanning 0.687702 0.047363 0.217468 0.028911 IomCtIrEvents 0.666550 -0.005557 -0.073093 -0.004361 iskScore 0.642339 0.222107 0.055108 0.132822 0.630177 0.415476 0.282405 0.012351 glServerHostScanning 0.231453 0.008744 0.014433 0.011193 cmpScan 0.201444 0.150965 0.028903 0.010696 elnetScanning 0.135024 0.004425 -0.012693 0.007054 ntBytesSent 0.102295 0.031144 -0.013843 0.037132 nysqlServerHostScanning 0.061327 0.027780 0.006909 -0.004062 tpScanning 0.052490 0.001920 0.024752 -0.001362 tpscanning 0.052490 0.001920 0.024752 -0.001254 tpScanning 0.041488 -0.003627 -0.004729 -0.001254 tpScanning 0.041488	Rotated Factor Loadi	ng			
NomCtlrEvents 0.666550 -0.005557 -0.073093 -0.004361 iskScore 0.642339 0.222107 0.055108 0.132822 lstPeers 0.630177 0.415476 0.282405 0.012351 glServerHostScanning 0.22107 0.005938 -0.008215 shHostScanning 0.231453 0.008744 0.011453 0.011193 cmpScan 0.201444 0.150965 0.028903 0.010696 elnetScanning 0.135024 0.004425 -0.012693 0.007054 ntBytesSent 0.102295 0.031144 -0.013843 0.037132 nysqlServerHostScanning 0.052490 0.001920 0.024752 -0.001362 vracleHostScanning 0.052490 0.001920 0.024752 -0.001362 vracleHostScanning 0.027460 0.891775 -0.00323 -0.01254 ntDstIps 0.207460 0.891775 -0.00323 -0.013777 0.06637 0.704567 0.516245 0.009468 207456 0.006681 0.554615	domCtlrScan				
iskScore 0.642339 0.222107 0.055108 0.132822 lstPeers 0.630177 0.415476 0.282405 0.012351 glServerHostScanning 0.322937 0.012186 -0.028938 -0.008215 shHostScanning 0.231453 0.008744 0.011453 0.011193 cmpScan 0.201444 0.150965 0.028903 0.010696 elnetScanning 0.135024 0.004425 -0.012693 0.007054 ntBytesSent 0.102295 0.031144 -0.013843 0.037132 nysqlServerHostScanning 0.061327 0.027780 0.006909 -0.004062 tpScanning 0.052490 0.001920 0.024752 -0.001362 oracleHostScanning 0.0207460 0.891775 -0.001362 oracleHostScanning 0.207460 0.891775 -0.001362 oracleHostScanning 0.0207460 0.891775 -0.00323 -0.01377 otdScanning 0.207460 0.891775 -0.00323 -0.01377 otDstEpst 0.006681	appSrvScanning	0.687702	0.047363	0.217468	0.028911
IstPers 0.630177 0.415476 0.282405 0.012351 glServerHostScanning 0.322937 0.012186 -0.028938 -0.008215 shHostScanning 0.231453 0.008744 0.011453 0.011193 cmpScan 0.201444 0.150965 0.028903 0.010696 elnetScanning 0.135024 0.004425 -0.012693 0.007054 ntBytesSent 0.102295 0.31144 -0.013843 0.037132 nysqlServerHostScanning 0.061327 0.027780 0.006099 -0.004062 tpScanning 0.052490 0.001920 0.024752 -0.001362 tracleHostScanning 0.0207460 0.891775 -0.009323 -0.013777 ottalbps 0.207460 0.891775 -0.009323 -0.013777 stChtry 0.063637 0.704567 0.516245 0.009468 atDstPorts 0.043553 0.515604 -0.051996 0.006148 zOffset -0.136055 0.009601 0.862117 0.025919 InsUdpEvents	domCtlrEvents	0.666550	-0.005557	-0.073093	-0.004361
Classical Scanning O.322937 O.101216 O.028938 O.008215 SHFostScanning 0.321937 0.012186 O.028938 O.008215 ShFostScanning 0.231453 0.008744 0.011453 0.011193 cmpScan 0.201444 0.150965 0.028903 0.010696 elnetScanning 0.132024 0.004425 -0.012693 0.007054 ntBytesSent 0.102295 0.031144 -0.013843 0.037132 nysqlServerHostScanning 0.052490 0.001920 0.024752 -0.001362 tpScanning 0.052490 0.001920 0.024752 -0.001362 vracleHostScanning 0.04148 -0.003627 -0.004729 -0.001254 ntDstIps 0.207460 0.891775 -0.009323 -0.013777 lstCntry 0.063637 0.704567 0.516245 0.009468 ntDstPorts 0.043553 0.515604 -0.051393 0.052911 ndDstPorts 0.031450 0.004516 0.117312 0.037856 ndpPackets	riskScore	0.642339	0.222107	0.055108	0.132822
shHostScanning 0.231453 0.008744 0.011453 0.011193 cmpScan 0.201444 0.150965 0.028903 0.010696 elnetScanning 0.135024 0.004425 -0.012693 0.007054 ntBytesSent 0.102295 0.031144 -0.013843 0.037132 nysqlServerHostScanning 0.061327 0.027780 0.006909 -0.004062 tpScanning 0.052490 0.001920 0.024752 -0.001362 vracleHostScanning 0.04148 -0.003627 -0.004729 -0.001254 ntDstIps 0.207460 0.891775 -0.009323 -0.013777 lstCntry 0.063637 0.704567 0.516245 0.009468 xtDstPorts 0.043553 0.515604 -0.052911 0.043553 uDstPorts 0.031450 0.004516 0.117312 0.037856 udpPackets -0.007530 0.017578 0.042286 0.707018 utDstIps 0.061426 0.032904 0.058677 0.528499	dstPeers	0.630177	0.415476	0.282405	0.012351
CompScan 0.201444 0.150965 0.028903 0.010696 elnetScanning 0.135024 0.004425 -0.012693 0.007054 ntBytesSent 0.102295 0.031144 -0.013843 0.037132 nysqlServerHostScanning 0.061327 0.027780 0.006909 -0.004062 tpScanning 0.052490 0.001920 0.024752 -0.001362 tracleHostScanning 0.041488 -0.003627 -0.004729 -0.001254 ntDstIps 0.207460 0.891775 -0.009323 -0.013777 lstCntry 0.066363 0.704567 0.516245 0.009468 atDstPorts 0.043553 0.515604 -0.051996 0.006148 zOffset -0.136065 0.009601 0.862117 0.025919 InsUdpEvents 0.031450 0.004516 0.117312 0.037856 -0.007530 0.017578 0.042286 0.707018 .xtDstIps 0.061426 0.032904 0.058677 0.528499	sqlServerHostScanning	0.322937	0.012186	-0.028938	-0.008215
elnetScanning 0.135024 0.004425 -0.012693 0.007054 ntBytesSent 0.102295 0.031144 -0.013843 0.037132 nysqlServerHostScanning 0.061327 0.027780 0.006909 -0.004062 tpScanning 0.052490 0.001920 0.024752 -0.001362 vracleHostScanning 0.041488 -0.003627 -0.004729 -0.001254 ntDstlps 0.207460 0.891775 -0.009323 -0.013777 lstCntry 0.063637 0.704567 0.516245 0.009468 ntDstPorts 0.043553 0.515604 -0.051996 0.006148 c20ffset -0.136055 0.009601 0.862117 0.025919 insUdpEvents 0.031450 0.004516 0.117312 0.037856 odpPackets -0.007530 0.017578 0.042286 0.707018 0.061426 0.032904 0.058677 0.528499 0.528499	sshHostScanning	0.231453	0.008744	0.011453	0.011193
AttBytesSent 0.102295 0.031144 -0.013843 0.037132 mysqlServerHostScanning 0.061327 0.027780 0.006909 -0.004062 tpScanning 0.052490 0.001920 0.024752 -0.001362 oracleHostScanning 0.04148 -0.003627 -0.004729 -0.001254 htDstlps 0.207460 0.891775 -0.009323 -0.013777 lstCntry 0.06681 0.554615 0.002453 0.052911 ohtDstPorts 0.044553 0.515604 -0.051996 0.006148 zOffset -0.13605 0.00901 0.862117 0.027919 insUdpEvents 0.031450 0.004516 0.117312 0.037856 odpPackets -0.007530 0.017578 0.042286 0.707018	icmpScan	0.201444	0.150965	0.028903	0.010696
NysqlServerHostScanning 0.061327 0.027780 0.006999 -0.004062 tyscanning 0.052490 0.001920 0.024752 -0.001362 tracleHostScanning 0.041488 -0.003627 -0.004729 -0.001254 htDstlps 0.207460 0.891775 -0.009323 -0.013777 lstCntry 0.06681 0.554615 0.008233 0.052911 ntDstPorts 0.043553 0.515604 -0.051996 0.006148 zOffset -0.136065 0.009601 0.862117 0.025919 InsUdpEvents 0.031450 0.004516 0.117312 0.037856 -0.007530 0.017578 0.042286 0.707018 0.061426 0.032904 0.058677 0.528499	telnetScanning	0.135024	0.004425	-0.012693	0.007054
by Scanning 0.052490 0.001920 0.024752 -0.001362 vracleHostScanning 0.041488 -0.003627 -0.004729 -0.001254 htDstIps 0.207460 0.891775 -0.009323 -0.013777 lstCntry 0.063637 0.704567 0.516245 0.009468 wtDstPorts 0.006681 0.554615 0.008233 0.052911 otDstPorts 0.043553 0.515604 -0.051996 0.006148 zOffset -0.136065 0.009601 0.862117 0.025919 InsUdpEvents 0.031450 0.004516 0.117312 0.037856 -0.007530 0.017578 0.042286 0.707018 wtDstIps 0.061426 0.032904 0.058677 0.528499	intBytesSent	0.102295	0.031144	-0.013843	0.037132
vacleHostScanning 0.041488 -0.003627 -0.004729 -0.001254 htDstIps 0.207460 0.891775 -0.009323 -0.013777 lstCntry 0.063637 0.704567 0.516245 0.009468 wtDstPorts 0.006681 0.554615 0.008233 0.052911 ntDstPorts 0.043553 0.515604 -0.051996 0.006148 zOffset -0.136065 0.009601 0.862117 0.025919 InsUdpEvents 0.031450 0.004516 0.117312 0.037856 -0.007530 0.017578 0.042286 0.707018 wtDstIps 0.061426 0.032904 0.058677 0.528499	mysqlServerHostScanning	0.061327	0.027780	0.006909	-0.004062
ntDstips 0.207460 0.891775 -0.009323 -0.013777 lstCntry 0.063637 0.704567 0.516245 0.009468 xtDstPorts 0.006681 0.554615 0.008233 0.052911 ntDstPorts 0.043553 0.515604 -0.051996 0.006148 zOffset -0.136065 0.009601 0.862117 0.025919 InsUdpEvents 0.031450 0.004516 0.117312 0.037856 -0.007530 0.017578 0.042286 0.707018 0.061426 0.032904 0.058677 0.528499	ftpScanning	0.052490	0.001920	0.024752	-0.001362
IstCntry 0.063637 0.704567 0.516245 0.009468 xtDstPorts 0.006681 0.554615 0.008233 0.052911 atDstPorts 0.043553 0.515604 -0.051996 0.006148 zOffset -0.136065 0.009601 0.862117 0.025919 insUdpEvents 0.031450 0.004516 0.117312 0.037856 odpPackets -0.007530 0.017578 0.042286 0.707018 xtDstIps 0.061426 0.032904 0.058677 0.528499	oracleHostScanning	0.041488	-0.003627	-0.004729	-0.001254
xtDstPorts 0.006681 0.554615 0.008233 0.052911 atDstPorts 0.043553 0.515604 -0.051996 0.006148 zOffset -0.136065 0.009601 0.862117 0.025919 insUdpEvents 0.031450 0.004516 0.117312 0.037856 dpPackets -0.007530 0.017578 0.042286 0.707018 xtDstIps 0.061426 0.032904 0.058677 0.528499	intDstIps	0.207460	0.891775	-0.009323	-0.013777
atDstPorts 0.043553 0.515604 -0.051996 0.006148 zOffset -0.136065 0.009601 0.862117 0.025919 insUdpEvents 0.031450 0.004516 0.117312 0.037856 odpPackets -0.007530 0.017578 0.042286 0.707018 xtDstIps 0.061426 0.032904 0.058677 0.528499	dstCntry	0.063637	0.704567	0.516245	0.009468
zOffset -0.136065 0.009601 0.862117 0.025919 InsUdpEvents 0.031450 0.004516 0.117312 0.037856 odpPackets -0.007530 0.017578 0.042286 0.707018 xtDstIps 0.061426 0.032904 0.058677 0.528499	extDstPorts	0.006681	0.554615	0.008233	0.052911
InsUdpEvents 0.031450 0.004516 0.117312 0.037856 udpPackets -0.007530 0.017578 0.042286 0.707018 xtDstIps 0.061426 0.032904 0.058677 0.528499	intDstPorts		0.515604	-0.051996	0.006148
dpPackets -0.007530 0.017578 0.042286 0.707018 xtDstlps 0.061426 0.032904 0.058677 0.528499	zOffset	-0.136065	0.009601	0.862117	0.025919
xtDstlps 0.061426 0.032904 0.058677 0.528499	dnsUdpEvents	0.031450	0.004516	0.117312	0.037856
	udpPackets	-0.007530	0.017578	0.042286	0.707018
xtBytesSent 0.005160 -0.000403 0.019399 0.202429	extDstIps	0.061426	0.032904	0.058677	0.528499
	extBytesSent	0.005160	-0.000403	0.019399	0.202429

Feature Extraction: Advanced Measures

Process Mining / Analytics


- Formal specification of common process vectors (behavioral decision trees)
 - Identifies key variables in sequence (time stamps)
 - Provides data collection and analysis foundation

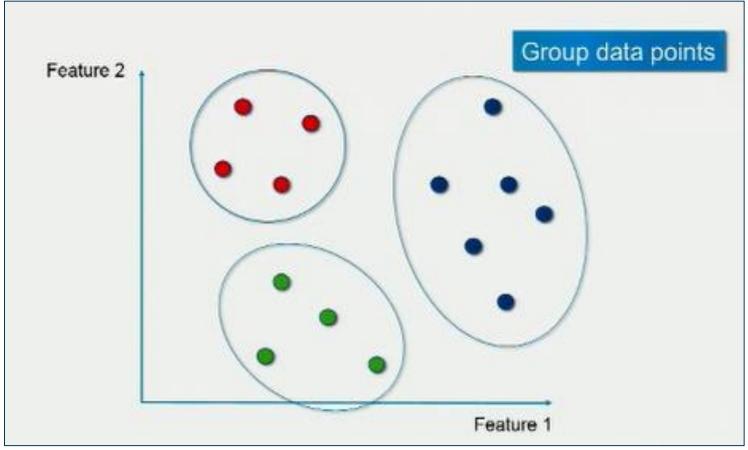
Feature Extraction: Advanced Measures

Process Analytics Example

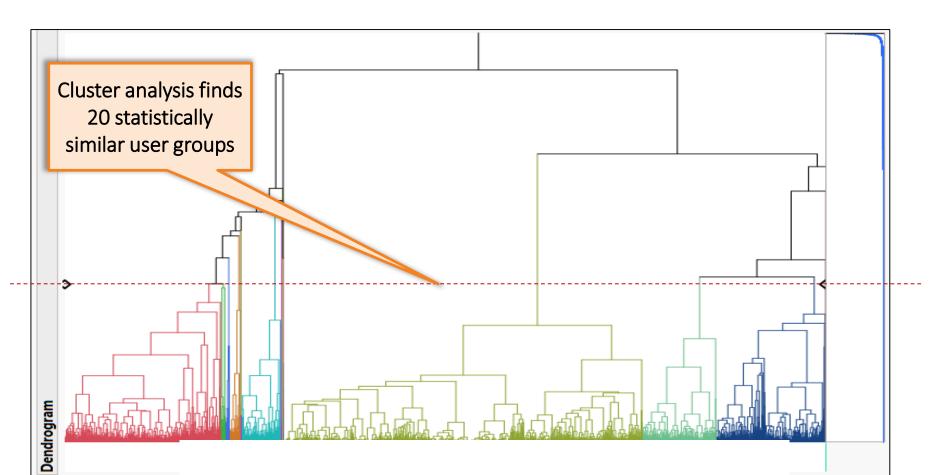
Signature pattern for identified INFECTED IP

<u>WpxDstlps</u>: Web Proxy Host Scanning Analysis

WpxDstPorts:


Web Proxy Destination Port Scanning Analysis

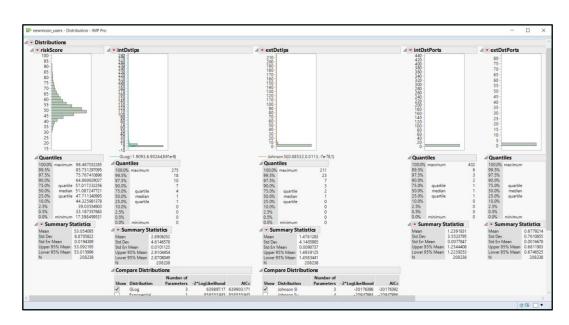
AppSrvScanning:

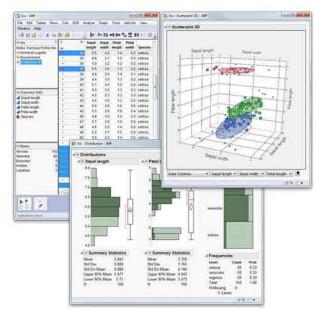

Application Server Host Scanning Analysis

Number distinct external hosts attempting to reach through the web proxy Maximum number of distinct external destination ports connected Scanning for devices hosting an http or application server

Unsupervised Machine Learning : Cluster Analysis

Pattern Extrapolation Machine Learning (Unsupervised)


Data Exploration and Cluster Analysis of Users


This exercise illustrates how to explore statistical factors associated with user network behavior and to generate statistically self-similar groups using cluster analysis.

Descriptive / Diagnostic Data Exploration

SAS JMP

SAS JMP Professional Desktop Analytics Tool

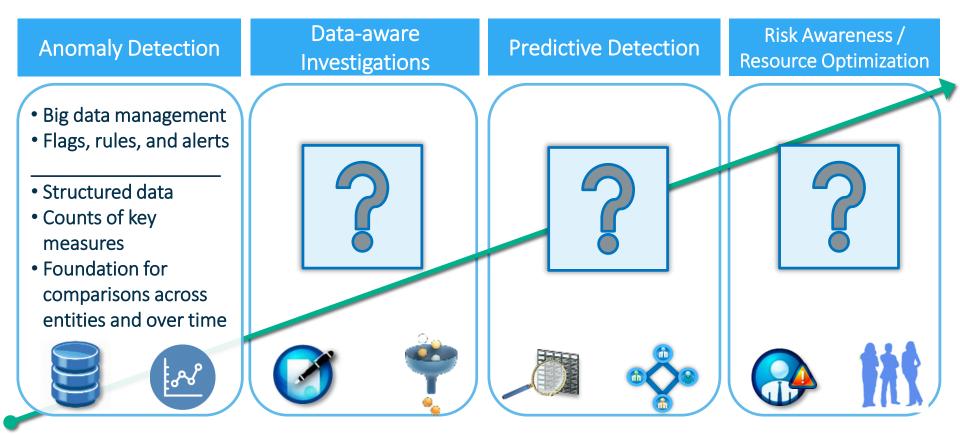
Large, disparate or messy data from lots of sources...

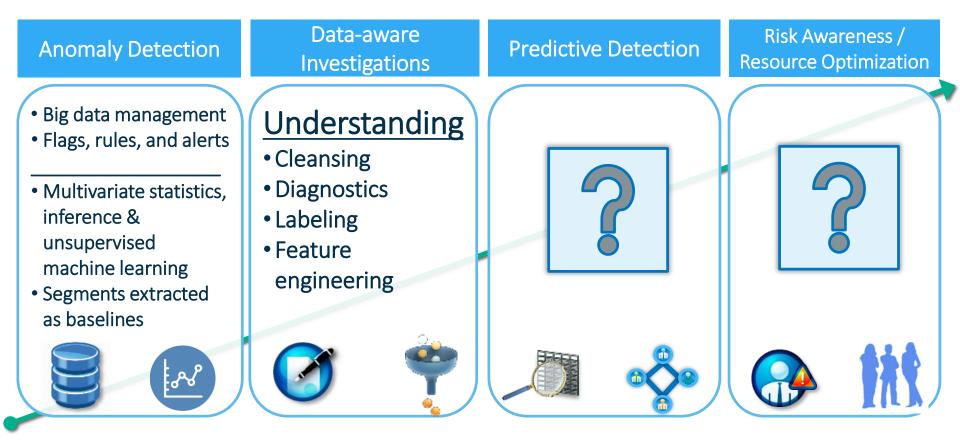
Data in databases

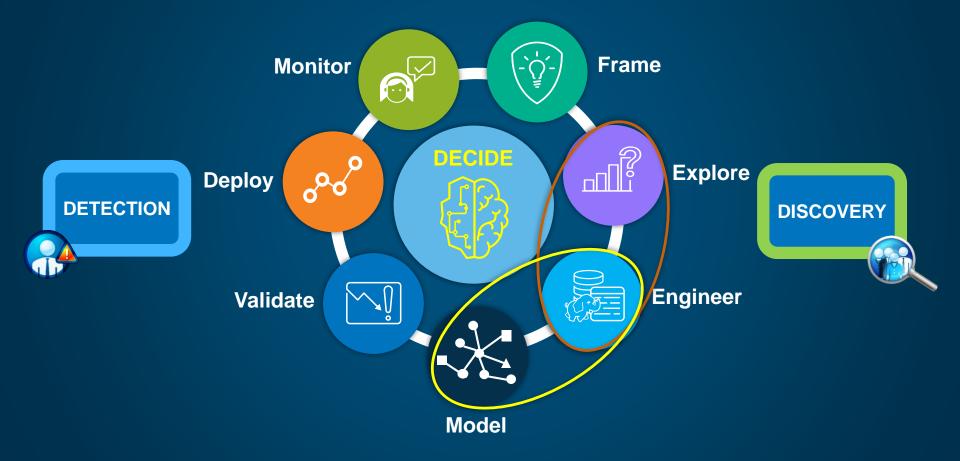
Data cleansing Data integration Data sampling Data security Data access Analytics

Use JMP as a SAS client, write SAS code in JMP, submit and view results. Utilize interactive JMP graphics, visualization and analysis tools.

Wrap-Up




Section Review


Cybersecurity Analytics Maturity

Cybersecurity Analytics Maturity

Cybersecurity Data Science (CSDS) Lifecycle

