4. Detection

Refined and Predictive Alerts via Supervised Machine Learning



Cybersecurity Data Science (CSDS)

TOPIC

1. FRAME

2. DATA

3. DISCOVER
l4. DETECT

5. DEPLOY
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Cybersecurity Data Science (CSDS) Lifecycle

Monitor

Deploy
DETECTION

*

Validate
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Objectives for Cybersecurity Detection and Prediction
Predictive Detection Using Supervised Machine Learning

Detection and prediction: targeted alerts using supervised
machine learning
- Overview: the power of labeled data and identified incidents

- Apply supervised analytics machine learning algorithms to
predict and to detect targeted anomalies

- Demo / Exercise: Enterprise Miner for supervised analytics



j CSDS Process
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Role of Algorithms

UNSUPERVISED LEARNING REINFORCEMENT

No answer key is provided. Al becomes reality.




Predictive (Supervised)
Machine Learning



Machine Learning

Descriptive (Unsupervised) iy

Ps 1\
- Cluster analysis / N

- Factor analysis

- Self-Organizing Maps (SOMs)

00204 &109 o3 Jievia 7z k-nearest neighbors

Predictive (Supervised)

mmmmmmmmmmm

« K-Means i o Gt L

Decision Tree

- Decision Trees (DT)
(random forests, boosted trees)

- Naive Bayes classifier
« Neural networks
 Support Vector Machine (SVM) —
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- Ensembles / Ensemble Learning Support Vector Machines



Machine learning tasks

Regression
Bayesian Statistics

Decision trees

Gradient boosting

Random forests
SVM

Gaussian processes

Supervised Learning

« Trained on labeled examples. We have a target we are
predicting.

Map inputs to desired output.

Suitable for classification, regression, prediction.
Considerations

Getting labeled data for rare events can be a challenge

Suspicion is not fraud
Data is skewed 99-1
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e.g. INCOME
VARIABLE 2

Regression

VARIABLE1 e.g. AGE
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Econometric Forecasting

Regression / Esimation of Price
t0 Fit through points

Y =0.0147 + 0.52°F1 + 0.6°F2 + 0.92°F3 + 0.00032°F4
(:-: 20N XD A0 SUM GUM T BN A 1T TIR0E DU K5 08 AT As o 15 T8 QNS NS QS AN e
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Econometric Diagnostics

An individual data “points” are anomalous based on the data

‘Foinl® Anomalies
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Predictive !

Decision Tree h s y
Algorithms M a c | n e Artificial Neural Network

Algorithms

Learning l |
osterior .
7 Algorithms... \;/
Bayesian Algorithms Ensemble Algorithms

http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/



http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/

Predictive Machine Learning (Supervised)
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Predictive ML
Why and How for Cyber?



Predictive Cybersecurity Use Cases

HOW?

WHAT?

1.

2.

3.

Malware detection

Device behavior

Known incidents

1.

3.

Recording of behavior (e.g.
Wireshark communications)

CMDB listing of devices +
recording of behavior (e.g.
authentication + NetFlow + DNS)

E.g. password attack in Linux
authentication logs; DDOS attack



Predictive ML for Malware

Collect examples of malware and benignware. Use these
examples to train ML algorithm to recognize malware.

Extract features from each training example to represent
example as an array of numbers. This step also includes
research to design good features that will help your
machine learning system make accurate inferences.

Train the machine learning system to recognize malware
using the features we have extracted.

Test the approach on some data not included in our
training examples to see how well our detection system
works.

Malware
Data Science

Attack Detection and Attribution
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Saxe, Joshua
Malware Data Science



Simple Example: Training Based on a Decision Boundary (2 feature Logistic Regression)
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Reference: Saxe, Joshua. Malware Data Science
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..and 3 dimensional Logistic Regression feature space
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Irregular and Disjointed Decision Boundaries: e.g. K-Nearest Neighbor
K-Nearest Neighbors
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Where do | get malware for analysis?

- Malware Zoos (e.g. theZoo) https://github.com/ytisf/theZoo

-+ Build your own zoo https://www.sans.org/reading- ﬂ ”
. .. A P -4
room/whitepapers/malicious/paper/33543 \\_/,; 2

- Metasploit

. Metasploit Framework is a complex tool that can surveil targets with
scans, select exploits to match vulnerabilities (~600), create payloads
(~200), receive connections from backdoors, launch exploits

Building Virtual

Machine Labs
Where can | test and analyze? A Hands-0n Guice
e ‘Sandbox’ of test computers
 Honeypots (e.g. RasPis)
e VM lab

Tony Robinson

Maar let op! Openbaar Ministerie beschouwt Metasploit en Nmap als malware
https://www.security.nl/posting/567852/0Openbaar+Ministerie+beschouwt+Metasploit+en+Nmap+als+malware



https://github.com/ytisf/theZoo
https://www.sans.org/reading-room/whitepapers/malicious/paper/33543
https://www.security.nl/posting/567852/Openbaar+Ministerie+beschouwt+Metasploit+en+Nmap+als+malware

Error

BIas-Varlanoe Tradeoff

Optimum Model Complexlty

Total Error

Variance

Bias?

P

e

-

too few variables/ )
underfitted Model Complexity

too many variables/
overfitted



Model Diagnostics



Actual class

Confusion Matrix

Predicted class

TP

True Positives

FN
False Negatives

Type 11 error

FP
False Positives
Type I error

TN

True Negatives

Metric Formula Interpretation
TP + TN
Accuracy - ~ Overall performance of model
¥ | TP+ TN+ FP + FN R
0 TP 2= e
Precision e — How accurate the positive predictions are
TP + FP
TP ‘ N
Recall —_— Coverage of actual positive sample
. I'P + FN
Sensitivity
Specificit L C f actual L 1
opecincily oo —reoas Loverage ol actual negative sample
I y N 15D g g I
2TP

11 score

2TP + FP 4+ I'N

Hybrid metric useful for unbalanced classes
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Model Diagnostics: Lift and Misclassification Rate

donation (event=Donated) R-Square 0.0329 Obserations Used: 1,165,920 Unused: 383,600
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Receiver Operating Characteristic (ROC curves)

True Positive rate (Sensitivity)
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False positive rate

False-positive (FP) rate is also known as the fall-out or probability of false alarm and can
be calculated as (1 - specificity, where specificity = TN / (TN + FP)).
The ROC curve is thus the sensitivity as a function of fall-out.



True Positive Rate

Area under the Curve (AUC)

Receiver operating characteristic example
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e
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o
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— ROC curve (AUC = 0.79)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
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ML Tools



Example Machine Learning Tools

Open source

Commercial

*R

* Python
* Weka
* Spark

* SAS JMP

* SAS Enterprise Miner
* SAS Viya VDMML

* IBM SPSS

* Oracle Data Mining
* Rapid Miner




Predictive ML

Demonstration and Hands-on Exercise



Gﬂm Predicting Device Types

This demonstration illustrates how to predict unknown
device types given a sample of known devices



Predictive Device Labeling — Enterprise Miner
Using Labeled Devices to Predict Unlabeled Devices
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Device Types on the Network

ID DEVICE TYPE COUNT Unknown devices: 34,615
1 |[Servers 7498
2 |Networks (devices) 1810
3 |Audio Video Device 856
4 [Storage 181 o R AR e
.4 — 1 G o

5 [Telecommunications 126 o Qo | | oaremn | o | "
6 |Application Server 77 - ame S
7 _[Facilities 37 s = Y g
8 |Critical Workstations 27 = b i i o-:.:'-.-._ : e
9 |Printing 17 - — f...i..,a,.;;u,;-;-, .._.- ;.
10 [Blade Chassis 8 = 5 | ..:,.,.Ioi‘.___ Q_:__i 10__
11 |UPS 5 e T
12 |Applications 3 et ~ p—
13 [Clusters 3 o sl i
14 [Service 1 e :
15 |Application Code 1 Woje | o a-a
16 |Databases 1 —_
17 |WebsSites 1

10,652




Exercise Review

e —




MODEL MANAGEMENT CHAMPION / CHALLENGER

Need to test multiple methods (hint: deep learning is not ALWAYS the best!)

Qo ;,u,.,:... Ls""‘l""“é [ —




Why were most of predictions 2?

Unknown devices: 34,615

ID DEVICE TYPE COUNT
1 |Servers 7498
2 |Networks (devices) 1810
3 |Audio Video Device 856
4 |Storage 181
5 [Telecommunications 126
6 |Application Server 77
7 |Facilities 37
8 [Critical Workstations 27
9 |Printing 17
10 [Blade Chassis 8
11 [UPS 5
12 |Applications 3
13 [Clusters 3
14 [Service 1
15 |Application Code 1
16 |Databases 1
17 |WebSites 1
10,652
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Do not assume given labels are statistically significant!

Deterministic (organizational groupings)

HISTOGRAM ft3 P VALLES PEERGROUP ADJUSTED VALUES AWhole Model Test
Data Scientist . Model  —Loglikelood Df CiSquare Prob>Chisiq
X Difference 330596/ 440 6611934 <,0001*
i Full 24287.706
| Reduced 27503673
2 Little improvement
| over random
: | RSquare (U) 0.1198 1<| groupings
i AlCc 495367
X BIC 52845
15 : Observations [or Sum Wgts) 10740
' | Measure Training Definition
| Entropy RSquare 0.1198 1-Loglike{model)/Loglike(0)
' Generalized RSquare 04624 (1-(L(0)/Limodel)) “(2/n))/ [ 1-LI0 "2 ...
w| ! Mean -Log p 2.2614 3 -Leg(p[l)/n
| RMSE 0.8581 v J(y(l-plj
X [¥Til-ell ~25% correct
! Misclassification Rate  0.743 classification rate
| ! M 10740 n
| 4 Lack Of Fit
: H Source DF -Loglikelihood ChiSquare
| Lack Of Fit 209740 24210100 4842022
> [I ” II] Saturated 210180 77.598 Prob>ChiSq
e 2 o ue f‘_,f-*" Lo Fitted 440 24287706 1.0000

T outliers =



Python on Viya CAS

Running Python on CAS via SWAT

40



How to program against CAS?

SAS/CONNECT
Bridge Other Programming
Languages/API
SAS 9.4 M4 SAS 9.4 M5 SAS Viya

g ¢

% Eﬁg SAS® Studio R" Jve
= : . . : python

SAS Studloﬁa SAS StUd'O@ SAS® Studio 5 m -‘

CAS Procedures
and Action Calls
CAS Procedures Action Calls

and Action Calls

Cloud Analytic Services (CAS)




SAS and Open Source Integration

Interactive Matrix . .

* Execute open source e Submit R code * Execute R code from * Use open source
code using system within IML from SAS the open source software to take
commands via the Code Editor. integration node. control of analytical
DATA step. * Pass data between R * Execute Python code tools.

and SAS. using a system

command.



What is SWAT?

- SAS Scripting Wrapper for Analytics Transfer
- Enables Python, Lua, and R to interface with CAS

Example CAS call 3

using SWAT for

python

CAS

N

Action Call

CASResults -

_——

swat.CAS CAS Server
CAS Action Call
Binary using Binary Protocol
Connection
(Python to CAS)
CAS
Action

Binary
Results
(CAS to Python)

CAS Action Results
in Binary Format




Scripting Wrapper for Analytics Transfer (SWAT)

« The SWAT package enables you to interface with CAS from R or Python.

* Youcanwrite anRorPython program thatconnectstoa CASserver,load
data into CAS,analyze large in-memorydatasets quicklyandefficiently
using CAS actions, and work withresults of youranalyses using familiar
data wrangling techniquesinthe open source language.

@ python [«

P[ CAS Server ]




How do you submit code?

CAS Session Used to enable clients to communicate
with the server to request actions.




classification scikit-learn
algorithm cheat-sheet

regression

3 dimensionality
reduction




Predicting Security Violations

This demonstration illustrates how to predict when a user

requesting secure access should be denied based on past
behavior and profile



~ Jupyter

Files Running

Select items to perform actions on them.

0~ B/
[0 Contacts
[0 Desktop

[0 Documents

Clusters

[0 Downloads

— Jupyter

=
&
I
I~
I

=

Fython_Factonzation_hMachine Uemo.pynb
Python_Factorization_Machine_Exercise ipynb
Python_lmage_Classification_Demo.ipynb
Python_lmage_Classification_Exearcise.ipynb
Python_Machine_Leaming_Demo.ipynb

Python_Machine_Leaming_Exercise ipynb

A

OPEN JUPYTER NOTEBOOK

Python Machine Learning Demo - Secure Data Access Administration - Part |

4

Overview of the Predictive Modeling Case

A secure organization has a system for approving access to highly secure data. Each user has a security permission level and access is tracked. including
incidents where improper access was requested. Denied access involves an assessment when improper access is requested, resulted in a security incident
being recorded. Denied access requests are relatively high (~20%) and take up a great deal of security administrative time and resources. The organization
wishes to semi-automate access denial by predicting whether a new request resembles past denied requests (incidents). By using permissions, past activty.
outstanding requests, and job role variables, the company wants to build a model to predict whether an applicant would be denied secure access by an

administrator.

Data

After analyzing past security data (5960 cases), the organization selected a subset of 12 predictor (or input) variables to model whether a user was verified as
having improperly accessed secure data. The response (or target) variable (BAD) indicates whether a requester was recorded as improperly accessing secure
data. These variables, along with their model role, measurement level, and description, are shown in the following table from the HMEQ data set.

Name Model Role Measurement Level

Description

BAD
CLAGE
CLNO
SECPEM
DELING
DERCG
JOB

Target
Input
Input
Input
Input
Input

Input

Binary
Interval
Interval
Interval
Interval
Interval

Nominal

1 = security incident recorded, 0 = no incidents

Age of oldest outstanding request for clarification on access
MNumber of sensitive secure access permissions

Ratio of ouistanding secure reguests fo security permission level
Number of delinquent requests for clarification on access
Mumber of past access denials

Occupational categories




Python API on SAS Viya CAS

Anaconda 3 (distribution of tools): jupyter notebook, Spyder, Pscikit-learn,
matplot lib, NumPy, pandas

>> DOCUMENTS
Python_Machine_Learning_Demo.ipynb

Python_Machine Learning_Exercise.ipynb (completed)
Three ways to run code

Run icon (top bar)

Ctrl + Enter (selected segment)

Shift + Enter (run & move to next cell)



Toolbar

Markdown Cell

Code Cell

Jupyter Notebook

: JU pyte [ Untitled Lest Checkpoint: 2 hours ago (unsaved changes)

File [Edit

View Insert Cell Kemel

Help

# |RO

B 4+ 3 G B 4+ ¥+ H B & coe

v = CellToolbar

In [1]:

In [2]:

In [3]:

Linear Model Example with R and Jupyter Notebook

Equations

N e e 1)
= AR

## Cre=ate Linear Model Data ##
aet.aeed (B02)

n = 50

x = runif(n, min=10, max=30)
betal = 2

betal = 3

error = ronorm(n, mean=0, sd=3)
¥ = betad + x*betal + error

## Fit Mod=1 #3¥
modl = Im(y~x}
summary (modl)

## Plot Model ##
plat(y~x, col="hblus")

akline= (medl, col="re=d", lwd=2Z)

50




Results

Results

Jupyter Notebook Results

in [1]: ## Create Lineor Model Dota ##
set.seed(B02)
n = 5@
® = runif n, mine18, max-38
betad = 2
betal = 3
error = rnormin, mean=8, sd=5)
¥ = beta@ + x*betal + &rror
In [2]: ##% Fit Model ##
modl = Im{y=x)
summary (modl)
Call:
In{formula = ¥y ~ x)
Residuals
Min 10 Median 3Q Max
-9.3368 -2.7085 -@.2983 2.9151 8.9333
Coefflcients:
Estimate Std. Error t value Pr(z|t|)
(Intercept) -0.6877 2.5214 -0.277 0.783
" 3.1214 0.1183 26.390 «<2e-16 ***
Signif. codes: @ "***' @g.@01 "**' @.81 '*' 0.85 '.' 0.1 ' ' 1
Residual standard error: 4.446 on 48 degrees of freedom
Multiple R-squared: ©.9355, Adjusted R-squared: ©.9342
F-statiseic: 806.4 on 1 and 48 DF, p-value: < 2.2e-18
In [ " pPlot Model »w

plot{y~x, cola"blue™)
abline(modl, col="red”, lwd=2)
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Name Model Role

Measurement Level

Description

BAD
CLAGE
CLNO
SECPEM
DELINQ
DEROG
JOB
SECS
RECA
NINQ
REASON
SECL
YOJ

Target
Input
Input
Input
input
Input
Input
Input
Input
Input
Input
Input
Input

Binary
Interval
Interval
Interval
Interval
Interval

Nominal
Interval
Interval
Interval

Binary
Interval

Interval

1 = security incident recorded, 0 = no incidents

Age of oldest cutstanding request for clarification on access
Number of sensitive secure access permissions

Ratio of outstanding secure requests to security permission level
Number of delinquent requests for clarification on access
Number of past access denials

Occupational categories

Security sensitivity of requested data access

Recent access to secure data

Number of recent access clarification inquiries

Reason for access request

Security permission level

Years at present job



Semi-Supervised Learning



Machine Learning Segmentation and Classification

Pattern
Detection

Exp'loré“ft" and Unsupervised Learning Supervised Learning
nsignts

(Clustering Algorithm) (Classification Algorithm)

"
| -

i d
s b

~
4

Predictive
Model

by == A &,

. Predictive
LL Model

https://medium.com/datadriveninvestor/differences-between-ai-and-machine-learning-and-why-it-matters-1255b182fc6
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Human-in-the-Loop: Self-Improving Cybersecurity Analytics Cycle

4 A 1. TRADITIONAL RULE-BASED PATH

Rule-based
Alerts

InfoSec
Hunters

<L

SIEM /

InfoSec
Big Data Repository @ [

Investigation

2. UNSUPERVISED DISCOVERY VSN

Unsupervised
Machine
Learning

Unsupervised
Outliers &
Anomalies

~_~

L

Labeled
777777777777777777777777777777777777777777777777777777777777777777777777777777777 Instances

(TP or FP)
3. SUPERVISED LEARNING

Network
Discovery /
Data Quality

Feature
Engineering

Supervised
Machine
Learning




Training Data

Supervised .
Learning All Labeled Data

Semi- Some Labeled Data *
Supervised »
Learning Lots of Unlabeled

Data ' —

bssabial Al Unlabeled Data > | Model
Learning

56



Semi-Supervised Approach

labeled data 1. train the model pseudo-labeled data labeled data
: : : : with labeled data 000 @ : o :
00@ 000
0000 ‘X X e® @
unlabeled data 3. retrained the
000 model with the

260
000 2. use the trained model pseudo and
000 to predict labels for the labeled datasets

unlabeled data together

SOURCE: Analytics Vidhya. Introduction to Pseudo-Labelling : A Semi-Supervised learning technique
https://www.analyticsvidhya.com/blog/2017/09/pseudo-labelling-semi-supervised-learning-technique/



https://www.analyticsvidhya.com/blog/2017/09/pseudo-labelling-semi-supervised-learning-technique/

Machine learning tasks

Regression
Decision trees

Gradient boosting

Random forests
Autoencoders
Text Processing
Image Processing

Semi-supervised Learning

- Helpful when volume or variety of data is too high to allow
labelling

- Utilized labeled and unlabeled examples

- Classification, regression, prediction
Considerations

- Best of both worlds?

- More automated

0.0
090 .
0 9% 0¢0 :
0.0 ~ : -
I o /00 v ©: -
/ \ . / O
—_— = 00 ~ = (%)
ooo\g /! 00 ©
Ooo:‘\’/goo
0. ~,0 ©



Moving from Anomalies to Focused Incident Detection

@ Unsupervised
i Segments
I((ejaersr::'rri‘gtive) Unlabeled data — Patterns and
P anomalies

Diagnostic validation

Semi-supervised Red team attacks Refined features
learning

(descriptive and evidence and and predictive

predictive) investigative | machine learning
validation ¢ model

Supervised _
learning Continuous labeled data Labeled dataset Continuous
(predictive) from investigations (true B 4 predictive model

positive, false positive) refinement




Reinforcement Learning



EXAMPLES Reinforcement Learning

- Like teaching someone a game

The machine takes actions and learns from results
Maximize an expected future reward
Considerations

Data intensive — Data drives insight

Hard to understand what was learned

Convolutional Neural Random Walk Follow a good policy

Networks +1 ok

Monte Carlo

Neural Networks

Deep Forward Neural
Networks

Recurrent Neural
Networks

-1 =il

+ The agent lives in a grid

«  Walls block the agent’s path

« Agent’s action has randomness
+ Bigreward comes at the end







Section Review




Review: Machine Learning

Supervised Semi-Supervised

Unsupervised

Singl

No targets required * Easyto build
Finds similar * FEasyto
‘groups’ within the understand
data

Not a direct indicator of e
incident .
Will generally patterns

in all data (need to have
right data)

Only known cases!
Data skew

Useful with rare
events

Utilized both labeled
& unlabeled examples

Requires careful selection
of cases
Requires careful ‘tuning’

Reinforcement

Self learning
Improves over time
Pattern analysis

Black box

Large training set
required

Overfitting a problem



Machine Learning as a Process

PATTERN
DISCOVERY
& dlagnostlcs

MODEL
TUNING & DETECTION

maintenance MODEL & review

RESPOSITORY
S——
PREDICT
& validate
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e Global Impact
Open Data

Dataand Architecting Getting Data
Democracy for Access Right

In Search of g Integrated
Database Nirvana i

Analytics

http://www.oreilly.coni/data/free/archive.html



http://www.oreilly.com/data/free/archive.html

A

@E@ ldea Exchange

What do we do when there are very
few examples of known incidents?



Cybersecurity Analytics Maturity

Anomaly Detection

(Big data managemeb

* Flags, rules, and alerts

* Multivariate statistics,
inference &
unsupervised
machine learning

* Segments extracted
as baselines

-~

Data-aware
Investigations

~

Understanding

* Feature
engineering

*Labeling

* Diagnostics

* Unsupervised ML

Predictive Detection HisK Aware.ne.ss /
Resource Optimization

-~

g e

o ¥

1?

e ¥
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Cybersecurity Analytics Maturity

: Data-aware o :
Anomaly Detection D Predictive Detection
Investigations

Risk Awareness /
Resource Optimization

Gig data managemeh /Understandin? ( Lea rning \

* Flags, rules, and alerts

* Feature * Human-in-the-loop
.. . .- . . reviews "
* Multivariate statistics, engineering + Combined supervised and
inference & *Labeling unsupervised machine
machine learnin .
€ * Unsupervised ML

* Segments extracted
as baselines

IICR]
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Cybersecurity Data Science (CSDS) Lifecycle

Monitor

Deploy Explore
DETECTION DISCOVERY
®
qa» N

Validat Engineer




APPENDIX
Deep Learning




What about Al?

Rules-based systems
Simplest form of automation, the
execution of rules

Predictive Analytics
Predict, advise, influence,
recommend

Machine Learning

Advanced analytic algorithms
create insight with more
automation

Al

Text Processin Deep Learning
The addition of unstructureg Self learning algorithms that
toxt COm ponent deliver even more insight and
automation
Robotics

Automate repetitive
functions and processes

Computer Vision
The addition of images and
video

Natural Language Understanding
Both natural language ingestion and
generation.



Deep Learning

Nested Neural Networks: train models for complex domains with big data
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synaptic terminal
dendrites —
cell body —— M\'\,) e

Inputs |->{ Strengths [->{ Sum | Transform Output




Deep Learning
A specialization of machine learning

A 3-layers fully connected neural network (DNN) °

Neural networks with many layers and different
types of ...

e Activation functions

* Network architectures

e Sophisticated optimization routines

Each layer represents an optimally weighted,
non-linear combination of the inputs

* Automatic feature generation

@ inputreawre @  neuron @ output class) @ biasnode

\ Inputlayer hidden layer [:] OUIULIaYE! e— yeight

* Extremely accurate results if well-trained; use
for classification, prediction, or pattern
recognition, especially in unstructured data
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Algorithm Deep Forward Neural Networks

Deep Forward
input Cell e Simplest type of Deep Learning algorithm, where

@ riicdenceu information is only fed forward, from input to output
. Output Cell

* While often combined with other networks to from
new networks, small or shallow DFNNs have been
shown to be effective with certain tasks, making
them more desirable for resource constrained

Practical Applications: environments (such as cell phones) — versus other,

+ Fraud (& cyber) more resource-hungry algorithms

* Can also be applied to NLP tasks including: language
identification, part-of-speech tagging, word

* Text pre-processing segmentation, and preordering for statistical

machine translation

* Marketing analytics

http://www.asimovinstitute.org/neural-network-zoo



Components

basic feed-
forward cell
(“neuron”)

A\
>

Fully-connected
layers

Basic Neurons and Fully-Connected Layers

output

7N

Z(Vm1 «w) + bias - tanh(8) - Value of cell

In a Deep Forward Neural Net:

Activation function

Each neuron is connected to all other neurons (fully-connected layers)

All connected previous values, multiplied by their weights, are added to bias and then fed

through an activation function

©2076 Fjodor van Veen - asimovinstitute.org



Algorithm Auto Encoders

* Unsupervised learning models used to encode
information via a fully-connected, hour-glass shaped

ot Cell architecture which is always symmetrical around the

Hidden Cell middle layer(s), where the info is most compressed

. Match Input Output Cell

* In its simplest form, the output layer is a copy of the
input layer and has the task of reconstructing its own
inputs (rather than predicting target values y given
inputs x)

Practical Applications:

* Anomaly detection * The aim of an autoencoder is to learn a
representation (encoding) for a set of data, typically
for the purpose of dimensionality reduction and/or

* Dimension reduction (VAE) noise reduction. Recently, the autoencoder concept
has become more widely used for learning generative
models of data

 Feature extraction

http://www.asimovinstitute.org/neural-network-zoo



Algorithm Convolutional Neural Networks

NG =
/O\O * Versatile, though best-known for their prowess at image analysis
B X R0 Output tasks. CNNs can detect com ini h as ed d

N layer . ponents in images such as edges an
B \W/\V curves, and learn how these features are combined in order to

detect larger structures such as faces, numbers, etc.

A Nt X/ X
D 0O 0 @
Xy

[ SETSET ]

Pooling
layers Hidden

Convolutional layer * Because CNNs preserve spatial structure, they are well-suited to
ver array data where nearby values are correlated (images, sound,
video, speech, etc.).

Practical Applications:  CNNs are relatively fast because convolutions are critical in
computer graphics and can be implemented on GPUs

* Image/object recognition

* For text analysis, word-level or character-level CNNs can be

applied for tasks such as sentiment analysis, categorization, or
e Text Classification spam detection. Note: because CNNs require fixed input and
output sizes, padding is often required for inputs.

* Video analysis

©2016 Fjodor van Veen - asimovinstitute.org




Components

Convolutional Layers

Each neuron is only connected to
cells within a certain proximity and
NOT connected to all other neurons
in the previous layer

Also called “filters”

\/\/\/\/

X T IX X

Pooling
layers

Convolutional
layer

Pooling Layers

Used for down-sampling, with
maxpooling being most popular

Once a feature is known to be present,
its exact location is not as important as
its relative location to the other
features

Convolutional and Pooling Layers

Convolutional Layer

\ inputs output /
/ + \

bias

cell is only
connected to Z(le % w) + bias ~— tanh(8) - Value of cell

neighbors within

. o =1
a certain proximity Activation function

Pooling Layer /
@ inputs output

Filter options:
*  Max (most common)
* Average
* L2-norm

\|/



Algorithm

Input Cell

. Recurrent Cell
. Output Cell

Practical Applications:

Language modeling (e.g.,
statistical machine
translation, word prediction)

Time-series forecasting

Image/video captioning

Recurrent Neural Networks

* Versatile, but especially well suited for sequence
data like time series or text because an RNN will
recognize patterns across time or the order of
words in a given language.

* Unlike CNNs, RNNs can handle variable-length
inputs and produce variable-length outputs, which
is useful for applications like NLG and machine
translation.

* Stacked RNNs can form a net capable of more
complex output (e.g., used for autonomous
vehicles)

* Note: even if your data is not sequential, you can
still process it sequentially and reap the benefits of
RNNs

©2076 Fjodor van Veen - asimovinstitute.org



Components

Recurrent cell

Time-Delayed Layers

Recurrent (Time-Delayed) Layers

Includes cell's value Recu rrent Layer
from previous time step
— sum tanh —»
+
bias

input output

NVZ

X

(Vpr1 * w) + bias — tanh(6) — Value of cell

k=1 Activation function

Time-Delayed Layers:

* They are connected to all neurons in the previous layer and updated just like basic cells, but with
extra weights: connected to the previous values of the cells and most of the time also to all the
cells in the same layer. These weights between the current value and the stored previous value
work much like a volatile memory (like RAM).

02076 Fjodor van Veen - asimovinstitute.org



Algorithm Variants

9,9
NN

NN
"%

Long Short Term

9.9
LRI

SN

GG

Gated Recurrent Unit

Input Cell

. Memory Cell
. Output Cell

Input Cell

. Different Memory Cell

. OQutput Cell

Long Short Term Memory (LSTM) RNNs and
Gated Recurrent Unit (GRU) RNNs

* RNN variants that help with the problem of the “vanishing” or
“exploding” gradient by introducing gates and an explicitly defined
memory cell

* Can learn complex sequences (e.g., write like Shakespeare, compose
primitive music) but typically require more resources to run. In cases
where extra expressiveness is not needed, GRUs can outperform
LSTMs.

* Each neuron has a memory cell and 2-3 gates which safeguard the
information by stopping or allowing the flow of it.

LSTM RNN GRU RNN

* Input gate * Update gate
* Qutput gate * Reset gate
* Forget gate

©2076 Fjodor van Veen - asimovinstitute.org



Autoencoders

output -

hidden

input

What are they?

The basic idea behind autoencoders is to encode
information automatically.

It requires at least 3 layers with perfect symmetry
on both sides.

Since the output layer is a copy of the input layer
there is no target.

The output layer is trying to represent the input
layer so anything that stands out from the input
layer is anomalous.



Autoencoder neural network

Output layer is copy of input
layer, so no target

Fully-connected, symmetric




Autoencoder neural network

J

|

3 symmetric, hidden layers: 5 units, 3 units, 5 units

Odd number of hidden layers

Hidden layers symmetric in
number of units, typically
decreasing to middle hidden layer
then increasing

Middle hidden layer (“code”
layer) used as new features



Autoencoder neural network

“Encoder”

| y ’

3 symmetric, hidden layers: 5 units, 3 units, 5 units




Autoencoder neural network

“Decoder”

e 0[00

I

3 symmetric, hidden layers: 5 units, 3 units, 5 units




Autoencoder neural network

O

000080

J

O

3 symmetric, hidden layers: 5 units, 3 units, 5 units

Units from the middle
hidden layer (“code”
layer) are our new
features, like PCs



Autoencoder neural network

@1\ “Anomaly

000080
9
000080
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How to use NNET for PROC NNET

autoenCOderS . proc nnet data=casuser.train;
Examp|e. input cycle X1 - X24 / level=interval;
2 hidder ;
Programmatic Mo .
5 hidden 12;
ApprOaCh USIﬂg train outmodel=casuser.enginennet;
optimization regl2=8.1;
. score out=casuser.autoencoder;
SAS StUd'O / COde code file="/casuser/nnetscore.sas™;
run;
Node Best Practices:

Model Information _
Madel Neursl Net ¢ |npUtIayers“CDUtpUtlayerS
MHumber of Observations Used 1987

Mo of Obeervations Fosg o « Use odd number of hidden layers (ex. 3, 5, 7, etc...)

Number of Nodes T8
Rl i _ - Center hidden layer should have 2 nodes

Humber of Cutput Nodes

Number of Hiddzn Nedes k- - Create a bowtie / hourglass between input & output
Number of Hidden Layers 2 |ayers

Humber of Weight Parameters
Number of Bias Parameters - #nodes in layers between input and center should be decreasing
Architecture MLP (AUTCENCODER)
Seed for Initial Weight 302877870

- # nodes in layers between center and output should be
increasing and match input to center pattern

Optimization Technigque LBEFGS

Mumber of Meural Mets 1

Objective Value 0 7asast1s4s - Deeper the network = more time is needed to train




