

Data Science for Cybersecurity Risk

Scott Mongeau Data Scientist – Cybersecurity SAS Institute

June 22nd 2017 10:00-11:00 am EDT / 3:00-4:00 pm BST / 4:00-5:00 pm CST

Data Scientist **Cyber Security**

scott.mongeau@ sas.com

+31 68 370 3097

SCOTT MONGEAU

Experience

- SAS Institute Data Scientist (cyber/fraud/security)
- Deloitte Mgr. Analytics (fraud/fin.crime/cyber)
- Nyenrode University Lecturer Analytics
- SARK7 Analytics Owner / Consultant (risk/finance)
- Genentech Inc. / Roche (biotech) Principal Analyst / Sr. Manager
- Atradius (insurance) Senior R&D Engineer
- CFSI (credit collateralization) CIO / Head of IT

Academic

- PhD (ABD)
- MBA (OneMBA)
- MA Financial Management
- Certificate Finance

NYENROI

zafung

ERASMUS

RSM

RSM

- GD IT Management
- MA Computer & **Communications** Technology

UNIVERSIT

YouTube

- Introduction to Advanced Analytics
- Introduction to Cognitive Analytics
- TedX RSM: Data Analytics

AGENDA

Data Science for Cybersecurity Risk

•Why?

Cybersecurity risk management

- Challenges
- Data-driven approach
- Data Science (DS)
- DS for cybersecurity risk
 - Focused examples
 - Learnings from the field
 - Risk management solutions

Multidisciplinary Merge

Challenges bringing common interests together

DOMAIN	FOCUS	CHALLENGE
Cybersecurity	Protect network infrastructure and resources	Many unknown- unknowns
Risk Management	Identify probability and impact to control risks/opportunities	Uncertainty gap in cybersecurity domain (avoid, reduce, share, or retain risks?)
Data Science	Application of a range of methods to extract insights from data	Clarifying best practices to support cyber risk management

Common Interest

Barrie

B

(^)

Cybersecurity Risk Management

Cyber Incidents: Likelihood and Impact

Ssas

Anatomy of a Sophisticated Attack: Target retailer POS breach (2013) Hybrid social engineering multi-layered, multi-phased attack

10

Deep-incursion: STUXNET (Duqu/Flame) (2010)

State-sponsored sophisticated multi-phased worm attack

Stuxnet enters a system via a USB stick and proceeds to infect all machines running Microsoft Windows. By brandishing a digital certificate that seems to show that it comes from a reliable company, the worm is able to evade automated-detection systems.

2. search

Stuxnet then checks whether a given machine is part of the targeted industrial control system made by Siemens. Such systems are deployed in Iran to run high-speed centrifuges that help to enrich nuclear fuel.

3. update

If the system isn't a target, Stuxnet does nothing; if it is, the worm attempts to access the Internet and download a more recent version of itself.

4. compromise

The worm then compromises the target system's logic controllers, exploiting "zero day" vulnerabilities-software weaknesses that haven't been identified by security experts.

5. control

In the beginning, Stuxnet spies on the operations of the targeted system. Then it uses the information it has gathered to take control of the centrifuges, making them spin themselves to failure.

6. deceive and destroy

Meanwhile, it provides false feedback to outside controllers, ensuring that they won't know what's going wrong until it's too late to do anything about it.

SOURCE: IEEE Spectrum http://spectrum.ieee.org/telecom/security/the-real-story-of-stuxnet

DISTRIBUTE, WHOLESALE, RESELLERS.....

"There's a lot of talk about nations trying to attack us, but we are in a situation where we are vulnerable to an army of 14-year-olds who have two weeks' training"

- Roel Schouwenberg
 - Senior Researcher, Kaspersky Lab

http://spectrum.ieee.org/telecom/security/the-real-story-of-stuxnet

13

NOTICE OF EXTORTION

Your business, , has been targeted for extortion. The selection process is random, and was not triggered by any event under your control.

Should you fail to pay the one-time monetary tribute, by the deadline provided below, your business will be severely and irreparably damaged. The following methods are commonly employed in cases of non-compliance:

		Anonymous Reports of:	
	 Negative Online Reviews BBB Complaints Harassing Telephone Calls Fraudulent Delivery Orders Telephone Denial-of-Service 	Health Code Violations OSHA Violations Criminal Tax Evasion Money Laundering Illegal Drug Sales	
	Bomb Threats	 Marijuana Grow Operations 	
	Vandalism	 Methamphetamine Production 	
•	Mercury contamination	 Terrorist Training Activi 	

The tribute price is only One Bitcoin (1 BTC), but must be paid by August 15, 2014. Payment is to be made to the Bitcoin Wallet Address listed below.

If payment is not received, our team will begin taking the actions listed above. Once engagement has begun, it can only be stopped for a tribute of Three Bitcoin (3 BTC). Because many of the actions we take are catastrophic and irreversible, is it advised to pay the tribute before the deadline is reached.

17gt1BancvtnnJwy4BA41VBUH3pfbUvzE

I a minima in the story for spectra (1 b) for the stree by hard on the state of the

Impact from Cyber Incidents

TANGIBLE

- Destruction of infrastructure
- Incident handling costs
- Lost customers / clientele
- Legal judgements
- Regulatory fines
- Rectification of vulnerabilities

INTANGIBLE

- Loss of trust (customers, partners)
- Impact on strategic market position and share price
- Damage to reputation & brand
- Impact to credit rating

Reactive militarization...

Competitive 'digital innovation' pressures

Source: Gartner. 2015. Agenda Overview for Banking and Investment Services.

Ssas

Expanding digital offerings:

- Increasing access
- Complexity of systems
- Greater volumes of data

Proliferation of devices:

- BYOD
- VMs / containers
- IoT / smart devices
- ICS SCADA

In Search of: Targeted, Relevant, Actionable Alerts...

Data-Driven Cyber Risk Mangement

Many data sources... increasing data volume

Source Cyber Security Solutions, 2014.

Cyber Data Types and Monthly Volumes

Simply Complex

Identifying targeted anomalies amongst and ocean of noise...

Ssas

Data Science for Cybersecurity

Data Science => Uncertainty Reduction

SOURCE

Partnering for Cyber Resilience: Towards the Quantification of Cyber Threats

WEF report in collaboration with Deloitte:

http://www3.weforum.org/docs/WEFUSA_QuantificationofCyberThreats_Report2015.pdf

Data Science => Measurement

Advancing Cyber Resilience Principles and Tools for Boards http://www3.weforum.org/docs/IP/2017/Adv_Cyber_Resilience_Principles-Tools.pdf

Optimizing Accessibility Versus Exposure

Invest to point of optimality

SOURCE

Partnering for Cyber Resilience: Towards the Quantification of Cyber Threats

WEF report in collaboration with Deloitte:

http://www3.weforum.org/docs/WEFUSA QuantificationofCyberThreats Report2015.pdf

https://www.sas.com/en_us/whitepapers/ponemon-howsecurity-analytics-improves-cybersecurity-defenses-108679.html

Level of difficulty in reducing false alerts*

* Survey of 621 global IT security practitioners

Poll Question 1

1. At what stage are you in deploying a cybersecurity analytics program?

- a) Not planning
- b) Planning in next 3 to 12 months
- c) Planning in next 12 to 24 months
- d) Implementation underway
- e) Have completed

At what stage are you in your security analytics program?

SOURCE

Security Brief Magazine. (2016). "Analyze This! Who's Implementing Security Analytics Now?" Available at <u>https://www.sas.com/en_th/whitepapers/analyze-this-108217.html</u>

Overview Data Science

9) Calvin.Andrus (2012) http://en.wikipedia.org/wiki/File:DataScienceDisciplines.png

Schutt, Rachel; O'Neil, Cathy (2013). Doing Data Science: Straight Talk from the Frontline. O'Reilly Media.

Historical View

VALUE

VALUE

VALUE

Data Science for Cybersecurity Risk Analysis

Poll Question 2

2. What is the most important objective for applying cybersecurity analytics?

- a) Detect events in progress
- b) Determine root cause of past events (forensics)
- c) Provide advanced warning of potential internal threats and attackers
- d) Prioritize alerts, security threats, and vulnerabilities
- e) Provide advanced warning about potential external threats and attackers

https://www.sas.com/en_us/whitepapers/ponemon-how-security-

analytics-improves-cybersecurity-defenses-108679.html

When Seconds Count: How Security Analytics Improves Cybersecurity Defenses

Most important objectives for a cybersecurity analytics solution*

* Survey of 621 global IT security practitioners

Enterprise Cyber Security Data Science

Cyber Data Science Lifecycle

Simply Complex

Identifying targeted anomalies amongst and ocean of noise...

Ssas

Data Science for Cybersecurity Supports Core Uncertainty Reduction

Data Science => Uncertainty Reduction

SOURCE

Partnering for Cyber Resilience: Towards the Quantification of Cyber Threats

WEF report in collaboration with Deloitte:

http://www3.weforum.org/docs/WEFUSA_QuantificationofCyberThreats_Report2015.pdf

Linking and Managing 'Big' Cyber Data

Security Brief Magazine. (2016). "Analyze This! Who's Implementing Security Analytics Now?" Available at <u>https://www.sas.com/en_th/whitepapers/analyze-this-</u> <u>108217.html</u>

What data sources are available within your organization, should a security analytics program happen?

Data Science: Multiple Analytics Methods

Statistical Methods: Network Discovery

MEASURES

- Centrality
- Eigenvector
- Density
- Reach
- Strength
- Recopricity

Machine Learning

Discovering Patterns

Unsupervised machine learning

- You have a dataset, but little idea concerning the patterns and categories
- *-Example*: your have a large set of Net Flow data, but do not know patterns

Detection / Prediction

Supervised machine learning

- You have a baseline: a dataset with examples of what you are attempting to predict or classify (random forests, boosted trees)
- *Example*: known examples of cyber attacks based on Net Flow data

Cluster Analysis

Unsupervised Machine Learning (identifying patterns)

Not All Users are Alike...

Patterns in Complexity: Cluster Analysis

Patterns in Complexity: Cluster Analysis

Learnings from the Field: User Patterns

Pareto Principle

- 80/20% pattern in network-usage (user hours online)
 - Outliers: multiple devices 24 hours online
 - High correlation (80-90%) between hours online and propensity to align with multiple usage patterns...
- Pattern has been observed across multiple samples

Supervised Machine Learning (Predictive)

Attack Pattern for Prediction

Signature pattern for identified INFECTED DEVICE

Web Proxy Host Scanning

Web Proxy Destination Port Scanning

Application Server Host Scanning

Devices on the network that are anomalously scanning for external devices via the Web Proxy server Devices on the network that are anomalously scanning for external devices via the Web Proxy server Devices on the network that are anomalously scanning for devices hosting an http or application server

Summary Conclusion

When Seconds Count: How Security Analytics Improves Cybersecurity Defenses

Sponsored by SAS Institute Independently conducted by Prevence Institute U.C. Patroarkei Date: January 2017

COLOR STREET

Challenges preventing successful use of cybersecurity analytics*

https://www.sas.com/en_us/whitepapers/ponemon-how-securityanalytics-improves-cybersecurity-defenses-108679.html

* Survey of 621 global IT security practitioners

Cyberanalytics context

CHALLENGES		→ APPROACH	
Су	ber detection is challenged by	Cybersecurity analytics	
	high volumes of structured and unstructured data	operation at big data scale at high velocity	
	disconnected data sources of variable quality	assess, extract, transform, and aggregate data	
	high false positive alerts with rule-based approaches	unsupervised machine learning identifies hidden patterns	
?	lack of statistical baselines to establish validity	effective statistical diagnostics for model validation	
X	slow and manual investigation processes (needles in the haystack)	supply hunters with targeted alerts based on demonstrable statistical anomalies	- <u>`</u>

Analytics Lifecycle

SOURCE

SAS Institute. (2016). "Managing the Analytical Life Cycle for Decisions at Scale." Available at

https://www.sas.com/content/dam/SAS/en_us/doc/whitepaper1/manage-analytical-life-cyclecontinuous-innovation-106179.pdf

Data Science => Uncertainty Reduction

SOURCE

Partnering for Cyber Resilience: Towards the Quantification of Cyber Threats

WEF report in collaboration with Deloitte:

http://www3.weforum.org/docs/WEFUSA_QuantificationofCyberThreats_Report2015.pdf

Analytics Lifecycle

Building and Deploying Advanced Analytics

REFERENCES

- Aggarwal, C. (2013). "Outlier Analysis." Springer. <u>http://www.springer.com/la/book/9781461463955</u>
- Kirchhoff, C., Upton, D., and Winnefeld, Jr., Admiral J. A. (2015 October 7). "Defending Your Networks: Lessons from the Pentagon." Harvard Business Review. Available at <u>https://www.sas.com/en_us/whitepapers/hbr-defending-your-networks-108030.html</u>
- Longitude Research. (2014). "Cyberrisk in banking." Available at <u>http://www.longitude.co.uk/wp-content/uploads/2015/02/cyberrisk-in-banking-106605.pdf</u>
- Ponemon Institute. (2017). "When Seconds Count: How Security Analytics Improves Cybersecurity Defenses." Available at <u>https://www.sas.com/en_us/whitepapers/ponemon-how-security-analytics-improves-cybersecurity-defenses-108679.html</u>
- SANS Institute. (2015). "2015 Analytics and Intelligence Survey." Available at <u>https://www.sas.com/en_us/whitepapers/sans-analytics-intelligence-survey-108031.html</u>
- SANS Institute. (2016). "Using Analytics to Predict Future Attacks and Breaches." Available at https://www.sas.com/en_us/whitepapers/sans-using-analytics-to-predict-future-attacks-breaches-108130.html
- SAS Institute. (2016). "Managing the Analytical Life Cycle for Decisions at Scale." Available at https://www.sas.com/content/dam/SAS/en_us/doc/whitepaper1/manage-analytical-life-cycle-continuous-innovation-106179.pdf
- SAS Institute. (2017). "SAS Cybersecurity: Counter cyberattacks with your information advantage." Available at <u>https://www.sas.com/en_us/software/fraud-security-intelligence/cybersecurity-solutions.html</u>
- Security Brief Magazine. (2016). "Analyze This! Who's Implementing Security Analytics Now?" Available at <u>https://www.sas.com/en_th/whitepapers/analyze-this-108217.html</u>
- UBM. (2016). "Dark Reading: Close the Detection Deficit with Security Analytics." Available at https://www.sas.com/en_us/whitepapers/close-detection-deficit-with-security-analytics-108280.html