Carnegie Mellon University Software Engineering Institute

Cybersecurity Data Science (CSDS)

Best Practices in an Emerging Profession

Scott Allen Mongeau

Cybersecurity Data Scientist – SAS Institute
PhD candidate - Nyenrode Business University (Netherlands)

s.mongeau@edp1.nyenrode.nl scott.mongeau@sas.com

@SARK7 #CSDS2020 #FloCon2020

presentation is non-commercial, for educational purposes onl All opinions herein are my own, not those of my employe No rights claimed or implied to 3rd party material Copyright © 2020 Scott Mongeau All rights reservec

PhD academic research / book

~June 2020 release

Research on cybersecurity data science (CSDS) as an emerging profession

Cybersecurity
Data Science:
Best Practices in an
Emerging Profession

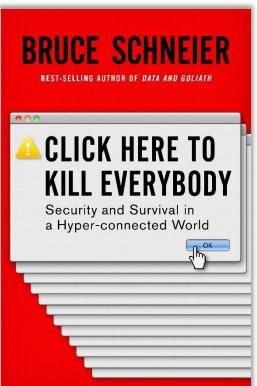
♠ Springer

- I. <u>Literature</u>: What is CSDS and is it a profession?
- II. <u>Interviews</u>: 50 CSDS practitioners
- III. <u>Designs</u>: Approaches to address challenges

I. CSDS Literature

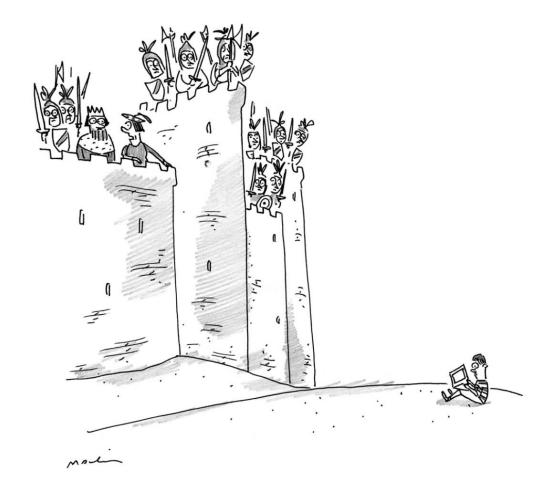
FUD Fear, Uncertainty, Doubt

Expansion of exposure and targets >!< Increasing sophistication, frequency, and speed of attacks



Castle and Moat

How quaint!



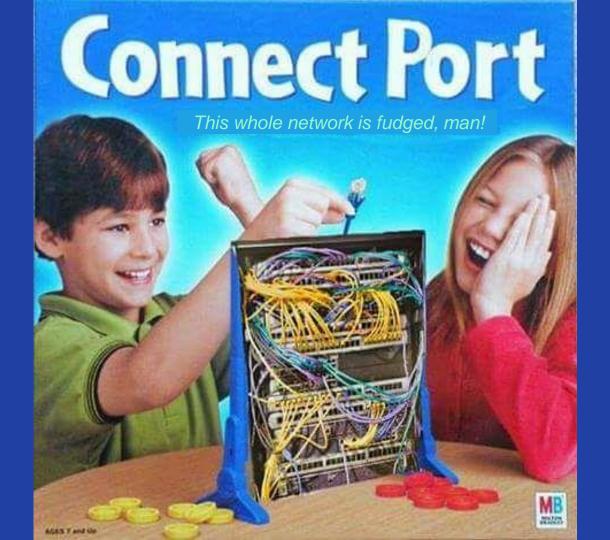
"Bad news, Your Majesty—it's a cyberattack."

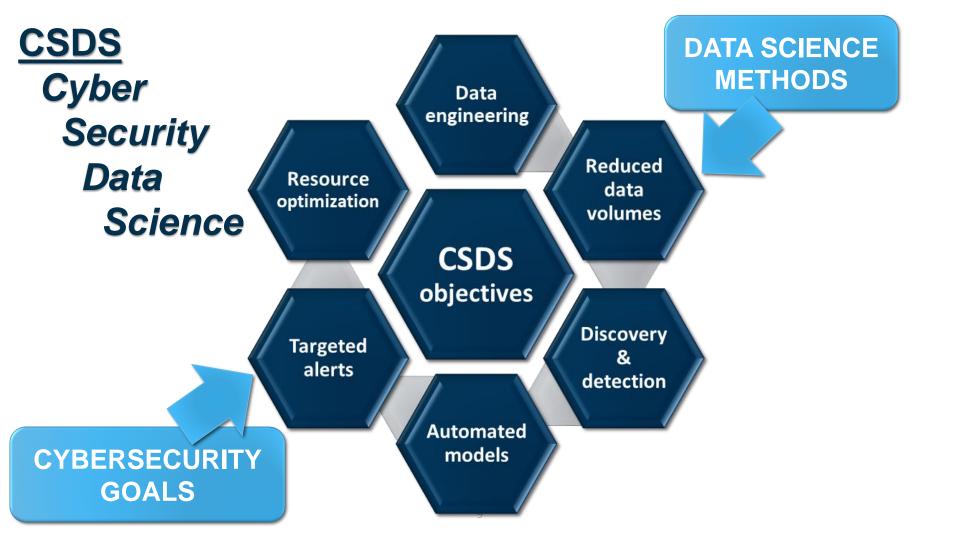


Cybersecurity Challenges

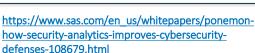
Data Science

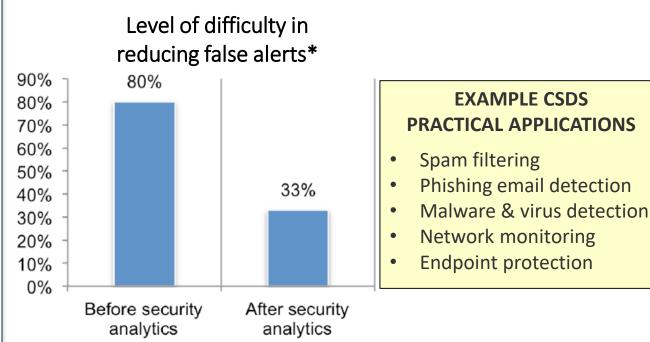
New hope amidst complexity and confusion...





CSDS: Existing Professionals + Demonstrated Efficacy





^{*} Survey of 621 global IT security practitioners

'Professional Maturity' Comparison

	#	CRITERIA	CYBER	DS	CSDS
Γ	1	Broad interest	•	•	•
	2	People employed	•	•	•
:	3	Informal training	•	•	0
ľ	4	Informal groups	•	•	0
	5	Professional literature	•	•	•
ľ	6	Research literature	•	•	
L	7	Formal training	•		O
ľ	8	Formal prof. groups	• /	0	0
9	9	Professional certificates	•	•	0
1	.0	Standards bodies	•	0	0
1	1	Academic discipline	•	•	0

CYBER =
Growing challenges +
rapid paradigm shift

DATA SCIENCE =
Poorly defined standards
"whatever you want it to be!"

CSDS = At risk problem child?

The Blessing and Curse of Data Science

PROS

- Commercial interest
 - Range of methods
- Freedom to experiment
 - Delivers efficiencies
 - Big data engineering
 - Insightful questions
- Power of machine learning

CONS

Hype & noise

Befuddling array of approaches

Lack of standards

Myth of automation

Big data ipso facto is not solution

Wait, what is the question?

 "Throwing the statistical baby out with grampa's bathwater?"

II. CSDS Interviews

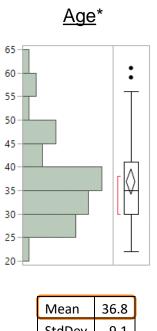
CSDS Practitioner Interviews

30 minutes per interviewee

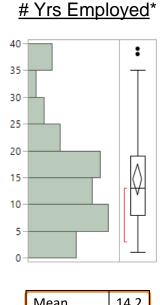
- **ENTRY**: How did you become involved in domain?
- What are perceived central CHALLENGES?
- What are key <u>BEST PRACTICES</u>?

Demographic Profile (n=50)

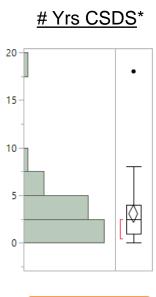
LinkedIn => 350 candidates => 50 participants



Mean	36.8	
StdDev	9.1	



Mean	14.2
StdDev	9.5



Mean	2.9
StdDev	1.9

^{*} Estimates inferred from LinkedIn profile data

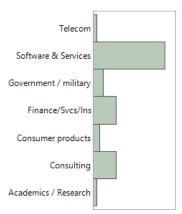
Demographic Profile (n=50)

Current Region

Current Region ¹	n	%
North America	35	70%
Western Europe	10	20%
Eastern Europe	2	4%
Middle East	2	4%
South America	1	2%

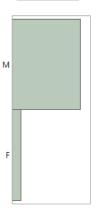
22% (n=11) relocated from native region
18% (n=9) relocated to US specifically
10% (n=5) relocated specifically from Asia/Pacific to US

Current Industry



Industry	n	%
Software and services	28	56%
Consulting	7	14%
Finance/financial		
services/insurance	7	14%
Government / military	3	6%
Consumer products	2	4%
Academics / research	2	4%
Telecom	1	2%

<u>Gender</u>



Gender	n	%
Male	43	86%
Female	7	14%

DATA PREPARATION! 84%

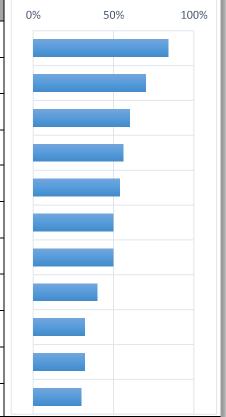
Marketing hype 70%

Establishing context 60%

Labeled incidents (evidence) 56%

CSDS 'CHALLENGES': 11

	CODED RESPONSES: Perceived Challenges	N	%
	CH1: Data preparation (access, volume, integration, quality, transformation, selection)	42	84%
ł	CH2: Unrealistic expectations proliferated by marketing hype	35	70%
	CH3: Contextual nature of normal versus anomalous behavioral phenomenon	30	60%
	CH4: Lack of labeled incidents to focus detection	28	56%
	CH5: Own infrastructure, shadow IT, and proliferation of exposure	27	54%
	CH 6: Uncertainty leads to ineffective reactive stance	25	50%
	CH 7: Traditional rules-based methods result in too many alerts	25	50%
	CH 8: Program ownership, decision making, and processes	20	40%
	CH 9: Resourcing, developing, & hosting in house	16	32%
	CH 10: Expanding breadth and complexity of cyber domain	16	32%
	CH 11: Policy, privacy, regulatory, and fines	15	30%



DATA PREPARATION! 84%

CSDS 'BEST PRACTICES': 26

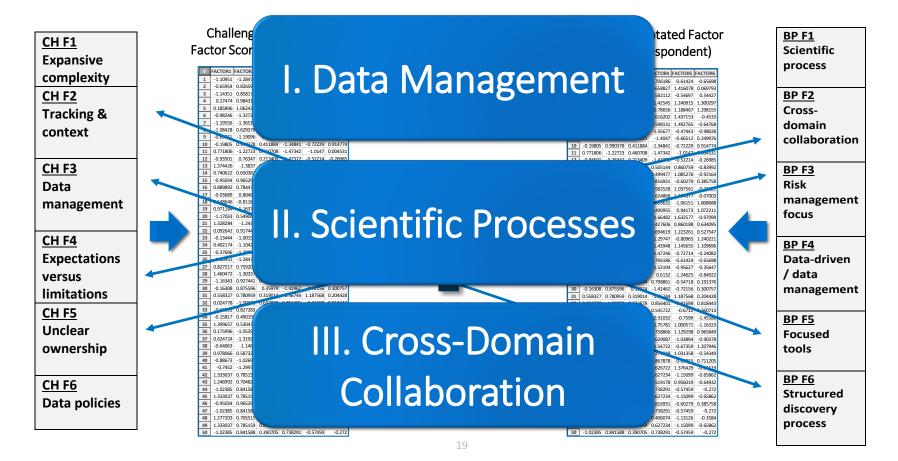
Cross-domain collaboration 76%

Scientific rigor 68%

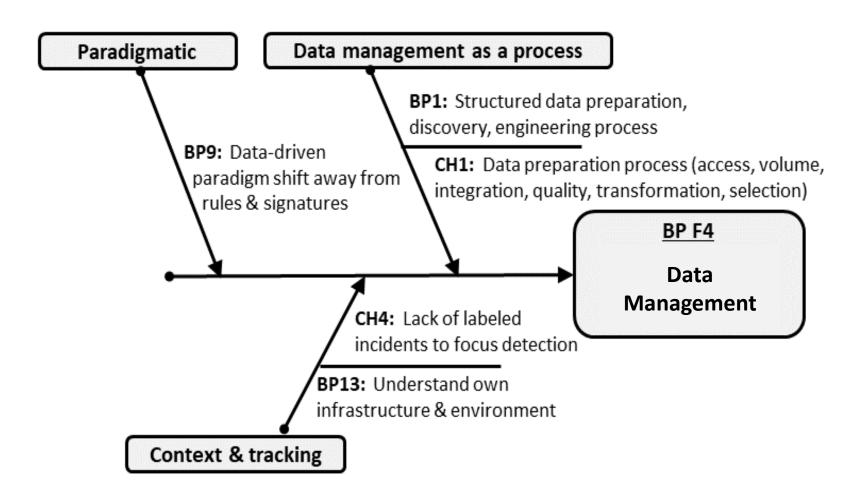
RESPONSES: Advoca ed best practices	Family	N		%	50%	100%
BP1: Structured data preparation, discovery, engineering process	Proc	42	84%			
BP2: Building process focused cross-functional team	Org	38	76%			
BP3: Cross-training team in data science, cyber, engineering	Org	37	74%			
BP4: Scientific method as a process	Proc	34	68%			
BP5: Instill core cyber domain knowledge	Org	33	66%			
BP6: Vulnerability, anomaly & decision automation to operational capacity	Tech	33	66%			
BP7: Data normalization, frameworks & ontologies	Tech	32	64%			
BP8: Model validation and transparency	Proc	31	62%			
BP9: Data-driven paradigm shift away from rules & signatures	Org	29	58%			
BP10: Track and label incidents and exploits	Proc	28	56%			
BP11: Cyclical unsupervised and supervised machine learning	Proc	25	50%			
BP12: Address AI hype and unrealistic expectations directly	Org	23	46%			
BP13: Understand own infrastructure & environment	Org	23	46%			

SPONSES: Advocated best practices Family	N	% 0	%	50%	100%
BP14: Cloud and container-based tools and data storage	Tech	22	44%		
BP15: Distinct exploration and detection architectures	Tech	22	44%		
BP16: Participate in data sharing consortiums and initiatives	Tech	21	42%		
BP17: Deriving probabilistic and risk models	Org	20	40%		
BP18: Upper management buy in and support	Org	16	32%		
BP19: Human-in-the-loop reinforcement	Proc	14	28%		
BP20: Survey academic methods and techniques	Org	13	26%		
BP21: Cyber risk as general enterprise risk & reward	Org	12	24%		
BP22: Segment risk programmatically and outsource components	Org	9	18%		
BP23: Adding machine learning to SIEM	Tech	5	10%		
BP24: Preventative threat intelligence	Org	4	8%		
BP25: Hosting and pushing detection to endpoints	Tech	4	8%		
BP26: Honeypots to track and observe adversaries	Tech	2	4%		

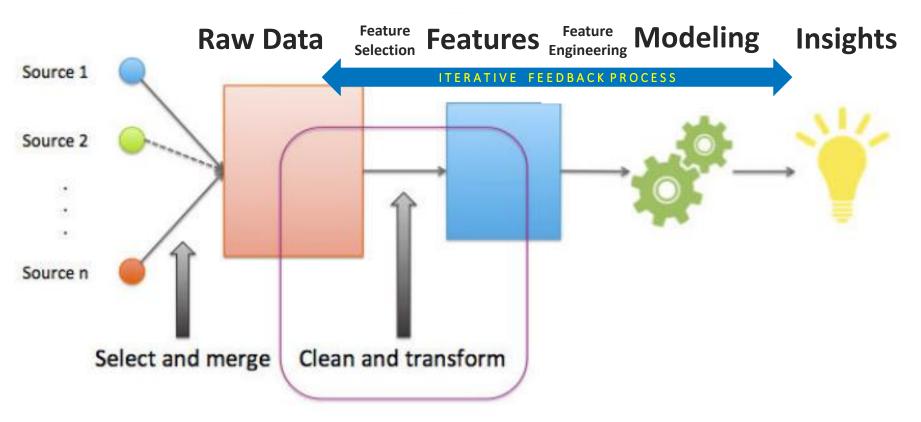
KEY CSDS GAPS: Factor-to-Factor Fitting



III. CSDS Designs

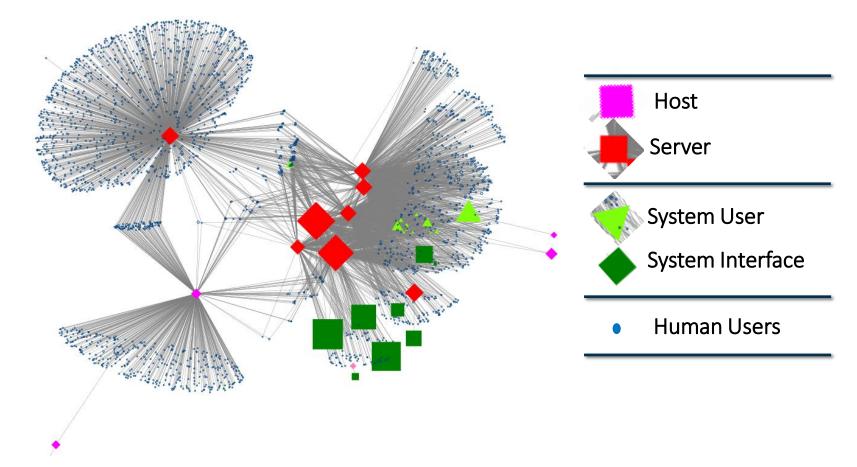


Data Management: EDA Process + Feature Engineering

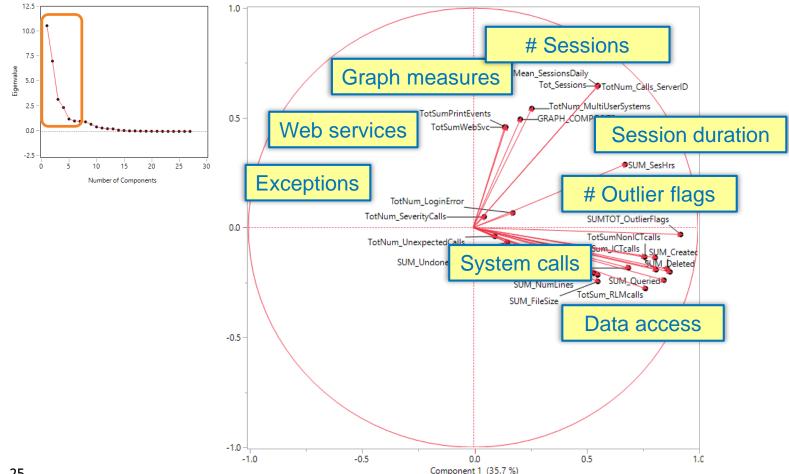


SOURCE: Alice Zheng, Amanda Casari. 2016. Feature Engineering for Machine Learning Models. O'Reilly Media.

Featurization: Example - Graph Analytics



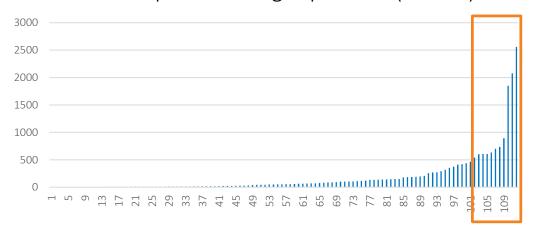
Feature Reduction: Example - Principal Component Analysis (PCA)

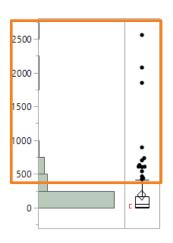


Exploratory Data Analysis (EDA): Example – Probabilistic Analysis

Exception Events

Exception messages per user (ranked)

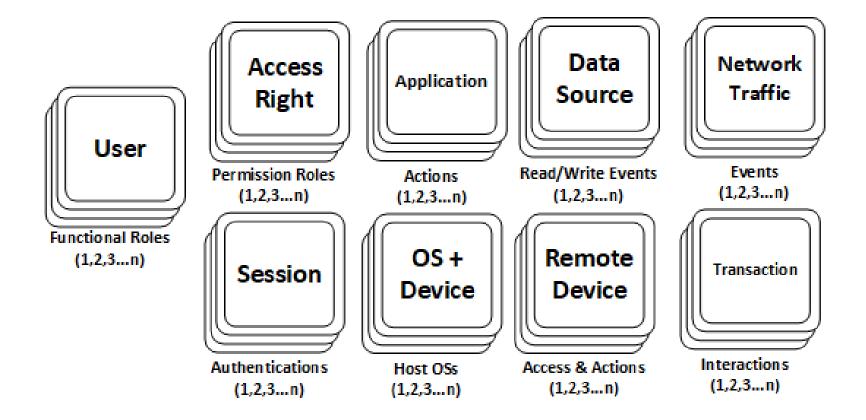


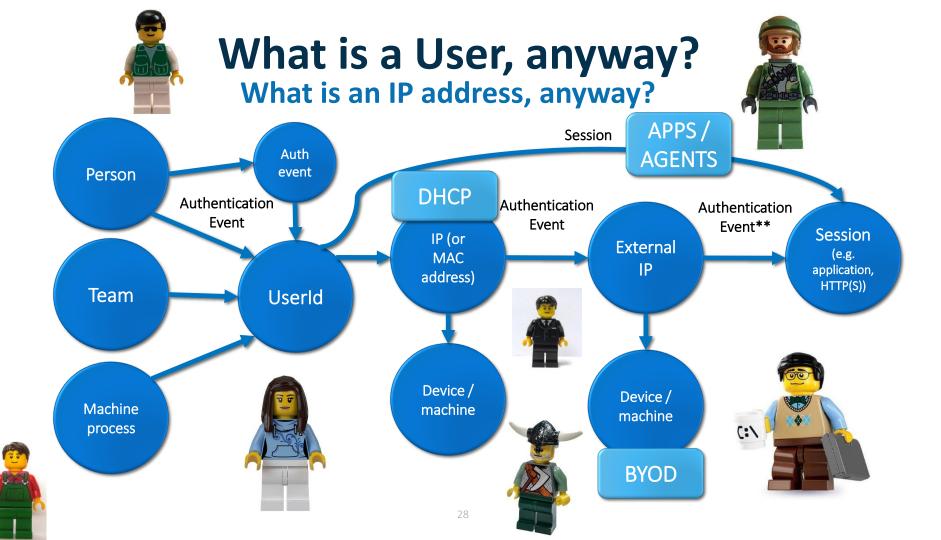


Quantiles						
100.0%	maximum	2559				
99.5%		2559				
97.5%		1889.725				
90.0%		517.5				
75.0%	quartile	172.75				
50.0%	median	55.5				
25.0%	quartile	9.75				
10.0%		3.3				
2.5%		1.825				
0.5%		1				
0.0%	minimum	1				

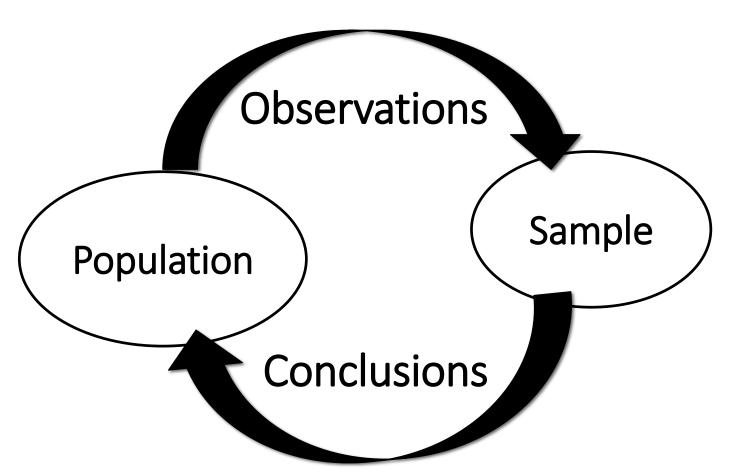
Summary Statistics				
Mean	184.01786			
Std Dev	380.96684			
Std Err Mean	35.997982			
Upper 95% Mean	255.35026			
Lower 95% Mean	112.68545			
N	112			

Entity Resolution

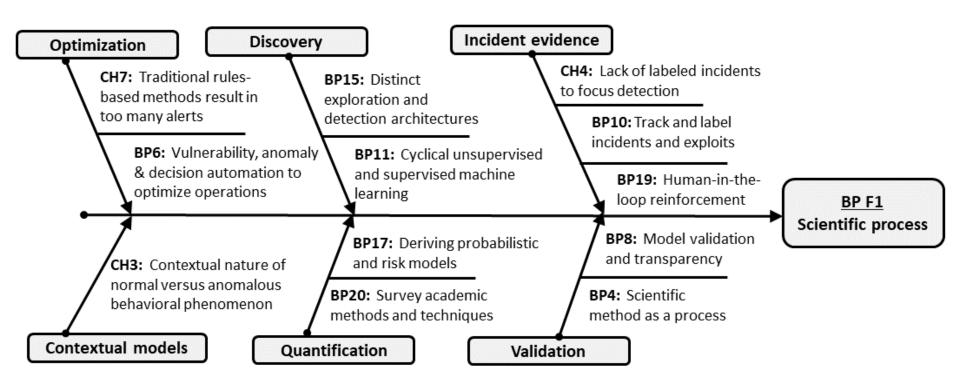




Inferential Statistics



Root Cause Analysis: Fishbone / Ishikawa Diagram

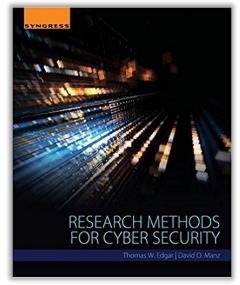


^{*} Resulting from factor analysis and factor-to-factor fitting

CSDS: What type of science is it?

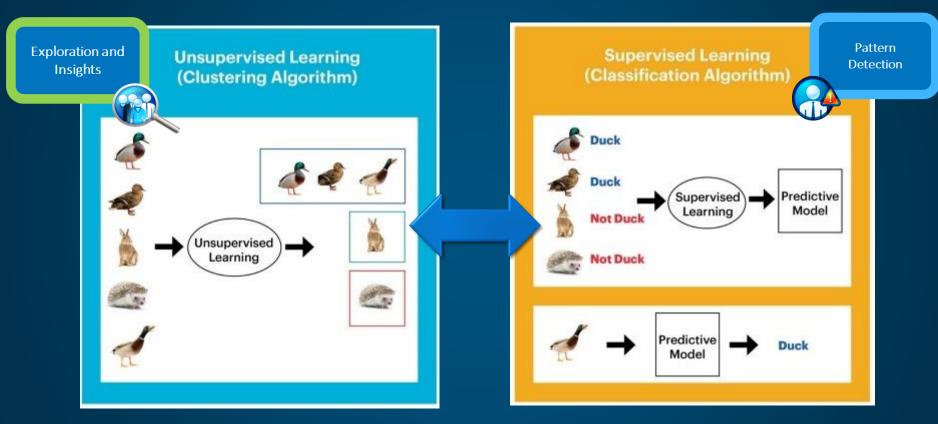
Research Methods for Cybersecurity

- Experimental
 - i.e. hypothetical-deductive and quasi-experimental
- Applied
 - i.e. applied experiments and observational studies
- Mathematical
 - > i.e. theoretical and simulation-based
- Observational
 - > i.e. exploratory, descriptive, machine learning-based



Manz, D. and Edgar, T. (2017) Research Methods for Cyber Security

Discovery ⇔ **Detection**



SEGMENTATION

CATEGORIZATION

Labels: What constitutes 'evidence'?

- Rules & - Field evidence Collected - Probing & signatures - Research & testing - 3rd party threat sourced intelligence Synthesized - Red Teaming - Expert opinion - Simulations - Thought - Laboratory experiments

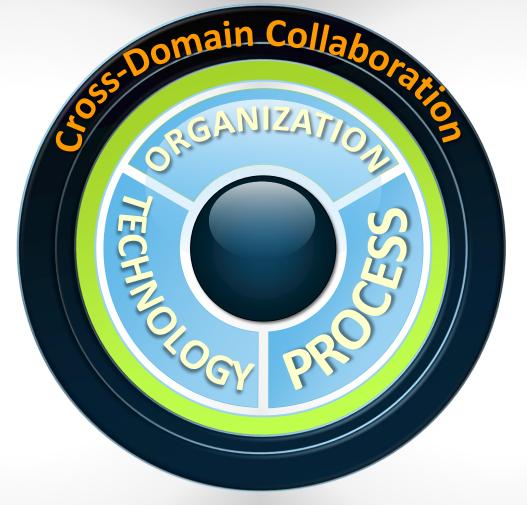
Deductive

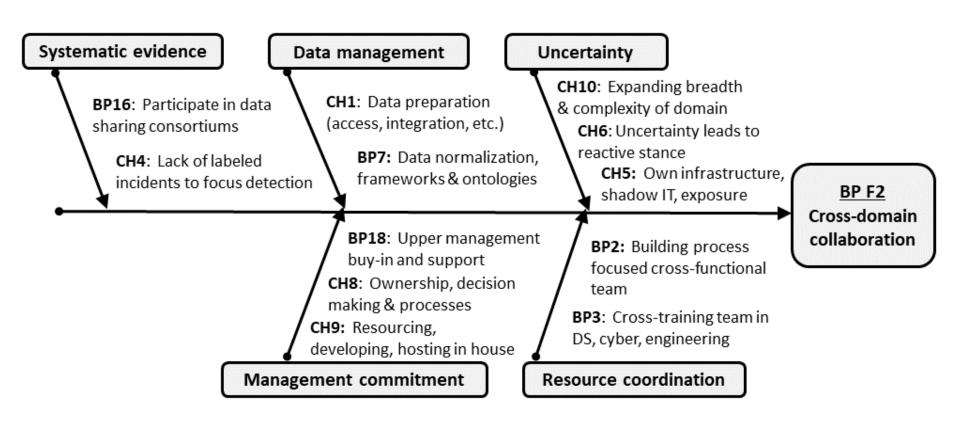
Inductive

EXAMPLES OF SECURITY EVIDENCE

- 1. Field evidence (e.g. observed incidents)
- 2. Sourcing own data from field testing (e.g. local experiments)
- 3. Honeypots
- 4. IDSs (Intrusion Detection Systems)
- 5. Simulation findings
- 6. Laboratory testing (e.g. malware in a staged environment)
- 7. Stepwise discovery (iterative interventions)
- 8. Pen testing (attempts to penetrate the network)
- 9. Red teaming (staged attacks to achieve particular goals)
- 10. Incidents (records associated with confirmed incidents)
- 11. Reinforcement learning (self-improving ML to achieve a goal)
- 12. Research examples (datasets recording attacks from research)
- 13. Expert review (opinion and guidance from experts)
- 14. Intelligence feed (indications from a 3rd party service)
- 15. Thought experiments (e.g. boundary conditions, counterfactuals)

CSDS as a Process: Discovery and Detection



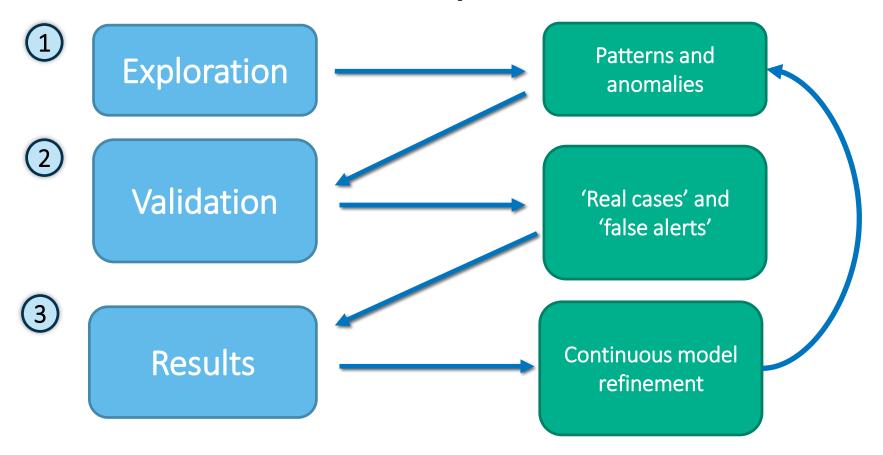


CSDS: High-Level Functional Process



RECURSIVE FEEDBACK

Continuous Detection Improvement Process

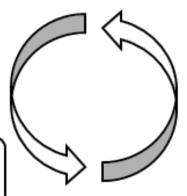


CSDS Model Development Process

Vindicate & Valorise

- Reproducibility
- Repeatability
- Interpretation
- Theory

DEPLOY



Develop & Verify

- · Frame problem
- Assemble evidence
- · Explanation & causation
- · Feature engineering

DISCOVER

Calibrate & Validate

- Conceptual model
- Hypotheses
- Counterfactuals
- Falsification

Conclusions

CSDS: A Work in Progress

Process of Professionalization

- Named professionals
- Set of methods and techniques
- Standards, best practices

Training programs

Certifications

Academic degree programs
Focused research journals
Formal sub-specialization

Specialist Researcher Primary Care Surgeon Diagnostician Emergency Care

APPENDIX

References

- Aggarwal, C. (2013). "Outlier Analysis." Springer. http://www.springer.com/la/book/9781461463955
- Kirchhoff, C., Upton, D., and Winnefeld, Jr., Admiral J. A. (2015 October 7). "Defending Your Networks: Lessons from the Pentagon." Harvard Business Review. Available at https://www.sas.com/en_us/whitepapers/hbr-defending-your-networks-108030.html
- Longitude Research. (2014). "Cyberrisk in banking." Available at https://www.sas.com/content/dam/SAS/bp_de/doc/studie/ff-st-longitude-research-cyberrisk-in-banking-2316865.pdf
- Ponemon Institute. (2017). "When Seconds Count: How Security Analytics Improves Cybersecurity Defenses." Available at https://www.sas.com/en_us/whitepapers/ponemon-how-security-analytics-improves-cybersecurity-defenses-108679.html
- SANS Institute. (2015). "2015 Analytics and Intelligence Survey." Available at https://www.sas.com/en_us/whitepapers/sans-analytics-intelligence-survey-108031.html
- SANS Institute. (2016). "Using Analytics to Predict Future Attacks and Breaches." Available at https://www.sas.com/en_us/whitepapers/sans-using-analytics-to-predict-future-attacks-breaches-108130.html
- SAS Institute. (2016). "Managing the Analytical Life Cycle for Decisions at Scale." Available at https://www.sas.com/content/dam/SAS/en_us/doc/whitepaper1/manage-analytical-life-cycle-continuous-innovation-106179.pdf
- SAS Institute. (2017). "SAS Cybersecurity: Counter cyberattacks with your information advantage." Available at https://www.sas.com/en_us/software/fraud-security-intelligence/cybersecurity-solutions.html
- SAS Institute. (2019). "Data Management for Artificial Intelligence." Available at www.sas.com/en_us/whitepapers/data-management-artificial-intelligence-109860.html
- Security Brief Magazine. (2016). "Analyze This! Who's Implementing Security Analytics Now?" Available at https://www.sas.com/en_th/whitepapers/analyze-this-108217.html
- UBM. (2016). "Dark Reading: Close the Detection Deficit with Security Analytics." Available at https://www.sas.com/en_us/whitepapers/close-detection-deficit-with-security-analytics-108280.html