Innovation Portfolio Management (IPM) Practitioner Foundations

PALISADE

Regional Risk Conference

Crowne Plaza Amsterdam Nieuwezijds Voorburgwal 5

Amsterdam, The Netherlands

Thursday, April 3rd, 2014

PALISADE Regional Risk Conference

Best Practices in Risk and Decision Analysis

April 3rd, 2014 • Amsterdam

Scott Mongeau Manager, Deloitte The Netherlands Deloitte.

CASE STUDY

Innovation Portfolio Management with Palisade DecisionTools Suite Scott Mongeau DELOITTE RISK SERVICES

Managing innovation initiatives requires making structured decisions in environments of uncertainty and complexity. Palisade DecisionTools offers an integrated platform for quantifying risks / opportunities, gaining analytical insights, optimizing strategy, and guiding decisions.

Speaker Background

Scott Mongeau

Analytics Manager Risk Services <u>smongeau@deloitte.nl</u>

+31 68 201 9225

Experience

- Deloitte Nederland
 Manager Analytics
- Nyenrode
 Lecturer, Business Decision Making
- SARK7
 Owner / Principal Consultant
- Genentech Inc.
 Manager / Financial Analyst /
 Enterprise Architect
- Atradius
 Web Analytics Manager
- CFSI
 CIO
- Consulting Programmer

Education

• PhD (ABD) Nyenrode

MBA Erasmus RSM

•

- MA Financial Management Erasmus RSM
- Certificate Finance
 University of California Berkeley
- Grad Degree Info Sys Mgmt Royal Melbourne Institute of Tech (RMIT)
- MA Communications
 University of Texas
- B Phil Miami University of Ohio

Welkom in Amsterdam!

Birth of modern capital markets

- Dutch East India Co. (VOC) (1602)
 - Corporation
 - Globalization
 - Genesis of modern stock exchange
 - Derivatives (futures & options)
 - Perpetuities

http://blog.sunan-ampel.ac.id/auliyaridwan/

Instruments to share risk

- Corporation as an 'entity'
- Capital markets as 'assessors of risk'
- Wisdom of crowds vs. speculation

Dutch Tulip mania

- First well-recorded market bubble
- Lessons in valuation
- Lessons in folly and delusion
- Markets are not always right, not always efficient!

http://en.wikipedia.org/wiki/File:Flora%27s_M alle-wagen_van_Hendrik_Pot_1640.jpg

Learning Objectives

CONTEXT

• Explain IPM foundation in terms of several contributing disciplines

PRACTICE

IPM as analytics challenge
Palisade as hands-on analytics tool

EXAMPLE

 Several practical cases to demonstrate key principles

IPM CONTEXT

Innovation Management

Powerful solutions for innovation management through state-of-the-art approaches integrating people, processes, and technology perspectives.

Innovation Portfolio Management

Strategy

Project Portfolio Management

COMPETENCIES

- Strategy / Pipeline
- Governance
- Finance
- Risk
- Resourcing / Coordination

GOALS

- Prioritize right projects & programs
- Build contingencies into overall portfolio
- Maintain response flexibility
- Focus on efficiencies

Investment Portfolio Management

OPTIMAL combinations of risks in a PORTFOLIO, given...

- Market measure of risk (cost of capital)
- Expected return (risk appetite)
- Instrument volatility relative to 'the market'

: portfolio analysis

: portfolio choice

Project Finance

WHERE TO PLAY

SERVE EXISTING MARKETS AND CUSTOMERS

ENTER ADJACENT MARKETS, SERVE ADJACENT CUSTOMERS

CREATE NEW MARKETS, TARGET NEW CUSTOMER NEEDS

USE EXISTING PRODUCTS AND ASSETS ADD INCREMENTAL PRODUCTS AND ASSETS DEVELOP NEW PRODUCTS AND ASSETS

TRANSFORMATIONAL

Developing breakthroughs and inventing things for markets that don't yet exist

ADJACENT

Expanding from existing business into "new to the company" business

CORE Optimizing existing products for existing customers

HOW TO WIN

Risk Management

Decision Management

5

Innovation Portfolio Management Strategy

Analytics

Analytics in Context

Data-driven solutions to address innovation portfolio and risk management issues.

Innovation Portfolio Management Strategy

VALUE

Analytics as a process

Making smarter decisions

C

Decision Process

1. Problem Definition

 Make profit enacting group & corporate strategy

2. Objectives Clarified

-Capture market within X investment threshold

3. Alternatives Outlined

- -Lower/higher investment
- -Other projects / combine projects
- 4. Decompose / Model (Quantification)
 - -Quantification (i.e. ranking / valuation)
- 5. Sensitivity Analysis (What if?)
 - -What if scenarios?
 - -Simulation / ranges
- 6. Follow-Up (Repeat)

-Changed objectives, alternatives, preferences?

Tools: Innovation Decision Process

Palisade DecisionTools Suite

Practitioner Tools

A full suite of tools to perform risk and decision analysis in order to optimize uncertain outcomes.

Innovation Decision Process

Managing Uncertainty Analytics

Analytics Suite: Palisade

@Risk

PrecisionTree

NeuralTools

TOOLKIT...

- Simulation
- Sensitivity analysis
- Optimization
- Correlation
- Econometrics
- Decision Trees
- Real Options

- StatTools
 - Evolver
 - TopRank
 - RISKOptimizer

EXAMPLE USES

- Supply chain optimization: vendor mgmt.
- Market price uncertainty: fuel costs
- Cost control: service offering efficiency
- NPV: uncertainty in new initiatives
- Risk Management: profitability analysis
- Optimization: floor configuration, services

Traditional Valuation Approach

Outcome is based on the single value for each defined assumption

Simulation: Monte-Carlo Analysis

- Probability distributions for all major variables
- Multiple outcome simulations run (1000's of X)
- Aggregate probabilities and sensitivities emerge

Simulation Approach to Valuation

Outcome is a range of possible values generated from applying simulation techniques to key assumptions using business developed probabilities

Analysis role becomes more value added through increased collaboration and communication with project team on key drivers and risks & opportunities

Variability / Volatility

Sensitivity Analysis & Optimization

- **Dynamic NPV analysis**
- Probability distributions for all major variables •
- Multiple outcome simulations run (1000's of times)
- Aggregate probabilities and sensitivities emerge

igure 7.4. The rapeseed sliprice distribution

Figure 7.5: The Sevel price distribution

Trends in perspective

Analytics is a rapidly evolving space. We maintain a focus on bringing new developments to bear to optimize value-creating decisions.

Simulation: Scenarios

Investment

- Estimated cost
- Product development cost

Production

- Capital expense
- Overhead
- Total expenses

•Economic conditions

- Inflation
- Currency exchange
- Unemployment

- •Commodity cost scenarios
- Market Simulation
 - -Estimated #
 Customers
 - -Competitors
 - -Cost per installation
- Sales
 - -Sales price
 - -Sale volume

Case 1: Integrated Operational Cost / Revenue Analysis

- <u>SEE</u>: Mongeau, S. 2010. Cellulosic Bioethanol Plant Simulator: Managing Uncertainty in Complex Business Environments. 2010 Palisade EMEA Conference
- Iterative model development working with area experts

<u>ViBeS</u>: Virtual Bioethanol-plant Simulator

Case 2: Optimization and Scenario Ranking

Financing	Feedstock	Pretreatment	3 Enzymes	Fermentation	Ethanol	Market
Percent Financed 40% LT interest Rate 7.5% Equity Return(RDR) 7.5% Tax Credit Vears 3 Tax Credit Vears 3 Tax Credit (Sigal) 0.20 Corp Tax Rate 30% PPE Coat Basis \$105M Basis Total SPF \$ 193,666,553 Base WACC 7.5% Tax WACC 8.6% Operative WACC 8.6% Namepiate factor \$ 2.25 Plant scale (mgy) 120	CS Conv (gmmt) 31 Low Most Likely 80.00 Lowest 710.00 Highest 82.00 CS SMt dry 11 Base Most Likely \$ 45.00 Lowest \$ 30.00 Highest \$ 30.00 Highest \$ 50.00	CS conv factor (gaint) 80.00000 CS conv factor (tipal) 0.01250 CS per EIDH conc cost \$ 0.67 Total processing cost \$ 1.11 Salary Cost / yr \$4.266,806	Enzyme Pricing [®] 1] Basit Nost Likely S 0.25 Minimum S 0.15 Maximum S 0.30 * <i>VCV/disu/EKPy</i>	Yesst Pricing 13 Base Maximum S 0.06 Most Lkely S 0.07 Minimum S 0.96	CEEOH Pricing (E) Historic • Most Likely 5 1.57 Minimum 5 1.77 Maximum 5 2.16	NIPV \$ 392,586,876 INR 29% % Elect Sold 18%
\$	*					4

Process Optimization

Subject to Monte Carlo sensitivity/ scenario analysis

Case 3: StatTools – Commodity Price Analysis

Huisman, Ronald. Erasmus School of Economics "Measuring price risk in the short run" Huisman, Ronald. (2009) "An Introduction to Models for the Energy Markets"

Case 4: @Risk – Market Behavior Simulation

- Market competition and consumer behavior simulation
 - -Market size
 - -Usage per customer
 - Chance of competitor entering market
- NPV distribution result
- Monte Carlo analysis
- Results in distributions concerning market size and potential profits

Pigco						
Price	\$	2.20	Cor	npet %age	0.2	
Unit Var Cost	\$	0.40	Yea	ar 1 Market Si	1000000	
Interest Rate		0.1	Yea	ar 1 worst sha	0.2	
Entrant Prob		0.4	Yea	ar 1 most likel <mark>:</mark>	0.4	
			Yea	ar 1 best shar	0.7	
Year		1		2	3	
Market Size		1000000		1050000	1102500	
Use per hippo						
of our drug	0.	433333333		0.346666667	0.2773333333	
Competitors						
(beginning of						
year)		0		1	2	
Entrants		1		1	0	
Unit Sales	43	33333.3333		364000	305760	
Revenues	\$	953,333	\$	800,800	\$ 672,672	
Costs	\$	173,333	\$	145,600	\$ 122,304	
Profits	\$	780,000	\$	655,200	\$ 550,368	
NPV	\$	2,435,545				

Market Competition Simulation / Analysis

Estimates Required

- Product pricing (profits)
- Expenses (costs)
- Market size
- Market growth rate
- Point of entry
- # of competitors
- Possible new entrants
- Relevant macroeconomic effects
- Estimate ratio of investment to market capture (using example data ideally)

What is achieved

- Optimization / efficiency
- Estimates average profitability and riskiness of new products
- Gives confidence probability of capturing / holding certain market size
- Projected revenues (NPV projection with confidence levels)
- Sensitivity analysis (Tornado Graphs) concerning impactful factors effecting NPV
- Scenario analysis with optimal scenario profiles

Example: Tornado Graph – Profit Sensitivities and Competitive Effects

<u>Case 6</u>: Identifying NPV Key Drivers

Example: Histogram - Identifying Non-Normal NPV Distribution

- Right skew
- Large mean and less spread equates to lower risk of returns
- Spread around mean: SD of NPV \$410 million

<u>Case 7</u>: Decision Tree Analysis

Option value determined by...

Real Option Analysis (ROA) Process

Steps	1. Compute base case present value without flexibility using DCF	2. Model the uncertainty using event trees	3. Identify and incorporate managerial flexibilities creating a decision tree	4. Calculate option value		
bjectives	Compute base case present value without flexibility at t = 0	Understand how the present value develops with respect to the changing uncertainty	Analyzing the event tree to identify and incorporate managerial flexibility to respond to	Value the total project using a simple algebraic methodolog and spreadsheet		
		Choose multiplicative or additive stochastic process	new information			
comments	Traditional present value without flexibility	Still no flexibility; this value should equal the value from Step 1 Explicitly estimate	Flexibility is incorporated into event trees, which transforms them into decision trees	Option value method will include the base case present value without flexibility plus		
		uncertainty	The flexibility has altered the risk characteristics of	the option (flexibility) value		
			the project, therefore the cost of capital has changed	Under high uncertaint and managerial flexibility option value will be substantial		

Example: Real Option Analysis - Binomial Tree Options

- Assumes one of two outcomes occur in each period: upside or downside
- Corrects discount rate imprecision of decision tree (equidistant periods)
- Values options by forming "twin" portfolio from which outcomes can be discounted
- Black-Scholes option pricing formula can be used as check as volatility shifts over time

** "Corporate Finance: Ch. 22 – Real Options", Brealey, Myers and Allen. P. 606.

Example: Biofuel Plant Binomial Tree

Asset value (EUR) 1,404,319 Underlying cost II (EUR) 1,410,000 a Underlying cost I (EUR) 455,000 a Option cost (EUR) 31,850 a Moturb	ssume 1,400,000 gallons/ year ssume 500,000 gallons/ year ssume 35,000 gallons/year plant							
Option time II 2 Option time 1 Risk free rate 4.2% Dividend 0% Volatility 15% Lattice step 3	European option Period 0 Phase Underlying assets lattice	1 Pilot-stage	2 Demonstration	3 Commercial				
Stepping-time 2 U 1.2363 D 0.8089 risk-neutral probability 65.22%	1,404,318.79	1,736,174.92 1,135,894.34	2,146,452,35 1,404,318,79 918,777,10	2,653,682,88 1,736,174,92 1,135,894,34 743,160,11	Decision lattice continue	continue	continue continue	execute execute
 Suggests highly structured rational decision paths 	3rd phase option value lattice: 3rd European option of which 380,646.39	the exercise pric 572,260.81 117,275,45	e is EUR 1,410.00 850,054,28 195,581,98	0 1,243,682.88 326,174.92 0.00	Decision lattice continue	continue	continue execute end	end
 Can be re-run as time and volatility (risk) evolves Embeds 	2nd phase option value lattice: 2nd European option of whic 142,040.86	h the exercise priv 236,883.62 0.00	ce is EUR 455.000 395,054.28 0.00 0.00	0.00	Decision lattice continue	execute	end	
management decision making points and values	1st phase option value lattice: 1st European option of which 122,942.87	the exercise price 205,033.62 0.00	e is EUR 36,400			5114		

Example: Drug Development Decision Tree *

- Incorporates all outcomes of future project stages and outlines management's decisions in each event
- Net present value (NPV) of each possible "end state" is calculated using the standard discounted cash flow (DCF) model
- Starting at end and working backwards, management chooses the highest NPV alternative at each decision point
- Process clarifies whether or not it makes sense to abandon, retrial or proceed should any of the trials fail

* "How to create value with Real Options based innovation management": http://www.juergendaum.com/news/12_28_2001.htm

A. Define Decisions & Probabilities

B. Quantify *Final Outcomes*

C. Regress to Most Rational Choice

Palisade Precision Tree Implementation

Example: Biofuel Plant Tree Analysis

- 1. Add management decision points, investments required, and probabilities
- 2. NPV valuation of each node in scenarios (DCF)
- Work backwards to probabilistic 'inherent value' of management option to expand/contract at each step
- 4. Choose for highest NPV value at each decision point
- 5. Revise as probabilities, decisions, and values as time progresses

Case 8: Integrated Simulation & Decision Making

Example: R&D Project Optimization

				Likelihood			
				of	Likelihood		
			Market	Technical	of FDA		
		NPV	Growth	Success	Approval		
1	Outstanding	0.585994	0.521739	0.589041	0.523742		
2	Above Average	0.217956	0.26087	0.228373	0.2708		
3	Average	0.123565	0.130435	0.119212	0.1354		
4	Below Average	0.072485	0.086957	0.063375	0.070058		
						Likelihood of	Likelihood
					Market	TechnicalSucces	of FDA
Score	Project	Cost	Manhours	NPV	Growth	s	Approval
0.211	1	300	500	4	1	3	2
0.151	2	250	600	3	2	4	3
0.155	3	350	550	3	3	2	2
0.220	4	380	750	2	3	3	1
0.193	r	400	050	0	4	2	2
	5	120	850	2	4	2	2
0.264	5	420	950	2	4	1	3
0.264 0.238	6 7	420	950 950 400	2	4 2 1	1	3
0.264 0.238 0.403	5 6 7 8	420 360 260	950 950 400 1100	2 2 3 1	4 2 1 2	1 3 2	3 2 4
0.264 0.238 0.403 0.423	5 6 7 8 9	420 360 260 180	950 400 1100 1200	2 2 3 1	4 2 1 2 3	1 3 2 1	2 3 2 4 3

Managing Uncertainty Analytics

Uncertainties Categorized

- 1. Target process(es) to employ
 - Associated <u>costs?</u>
- 2. Product strategy
 - Associated <u>revenues</u>?
- 3. Revenue forecasting
 - Competition, economic <u>factors</u>?
- 4. Process cost analysis
 - Productivity <u>variability</u>?
- 5. IPM planning / decision making
 - What decisions, made when?

Process Defined

- 1. NPV analysis
- Three processes
- Product strategies
- 2. Volatility simulation

- Monte-Carlo simulation
- 3. Decision Tree Analysis
- Use range of NPV end-points
- Add volatility (probability)
- Add key decision points

Integrated 'Uncertainty Valuation' Process

<u>Base Framework</u>

- Discounted Cash Flow (DCF) analysis via Net Present value (NPV)
- Allows for 'like-to-like' comparison of variant scenarios
- Cost of Capital: hybrid industry/market derivation and aggregate volatility assessment

Variability Analysis

- Monte Carlo allows for sensitivity analysis, structural optimization, and quantification of volatility (risk/opportunity) chiefly concerned with readily quantifiable financial and physical variables
- Assists in pinpointing key risks/opportunities and suggests strategies for mitigating, offloading, selling, insuring, hedging, or retaining said risks (with upside exposure)

Decision Tree / Real Options Analysis

- Chiefly concerned with classification of gross uncertainties (i.e. large, nebulous scenarios)
- Segments financial variables in MC model and allows for structured high-level management conversations at the Decision Tree Level (NPV values connected a tree end-points)
- Final value of aggregate opportunity quantified back to regressed present point
- Allows for ongoing managerial 'options based' decision making (continual maintenance of 'tree')

Conclusion

Innovation Management

Powerful solutions for innovation management through state-of-the-art approaches integrating people, processes, and technology perspectives.

Innovation Portfolio Management Strategy

Tool-driven Decision Process

The complete risk and decision analysis toolkit DecisionTools Suite

Managing Uncertainty Analytics

Uncertainties Categorized

- 1. Target process(es) to employ
 - Associated <u>costs?</u>
- 2. Product strategy
 - Associated <u>revenues</u>?
- 3. Revenue forecasting
 - Competition, economic <u>factors</u>?
- 4. Process cost analysis
 - Productivity <u>variability</u>?
- 5. R&D planning / decision making
 - What decisions, made when?

Process Defined

- 1. NPV analysis
- Three processes
- Product strategies
- 2. Volatility simulation

- Monte-Carlo simulation
- 3. Real Options Analysis
- Use range of NPV end-points
- Add volatility (probability)
- Add key decision points

APPENDIX

References

References: Decision Management

- Blenko, M. W., Mankins, M. C., & Rogers, P. (2010, June). The decision-driven organization. Harvard Business Review, June 2010, p 54 – 62.
- Hammond, J. S., Keeney, R. L., and Raiffa, H. (1999). Smart Choices: A Practical guide to Making Better Decisions. Boston: Harvard Business School Press.
- An, L. (2011). "Modeling human decisions in coupled human and natural systems: Review of agent-based models." Ecological Modelling.
- An, L. (2011). "Modeling human decisions in coupled human and natural systems: Review of agent-based models." Ecological Modelling.
- Barney, J. (1999). "How a Firm's Capabilities Affect Boundary Decisions." Sloan Management Review 40(3): 9.
- Blenko, M. W., M. C. Mankins, et al. (2010). "The Decision-Driven Organization." Harvard Business Review.
- Chouinard, Y., J. Ellison, et al. (2011). "The Big Idea: The Sustainable Economy." Harvard Business review 89(10): 11.
- Grote, G. (2009). Management of Uncertainty: Theory and Applications in the Design of Systems and Organizations. London, Springer.
- Monch, L., P. Lendermann, et al. (2011). "A survey of challenges in modelling and decisionmaking for discrete event logistics systems." Computers In Industry 62(6): 557-567.
- Zook, C. and J. Allen (2011). "The Great Repeatable Business Model." Harvard Business Review 89(10).
References: Project Finance

- Bodmer, E. (2010, October). *Project modeling in excel*. Program at Amsterdam Institute of Finance from October 27 – 29, 2010. Amsterdam, Netherlands.
- De Servigny, A. and Jobst, N. (2007). *The handbook of structured finance*. ebook: McGraw-Hill.
- Esty, B. C. (2004). *Modern project finance: A casebook*. Boston: John Wiley & Sons, Inc.
- Fabozzi, F. J., Davis, H. A., and Choudhry, M. (2006). *Introduction to structured finance*. New Jersey: John Wiley & Sons, Inc.
- Fabozzi, F. J., Kothari, V. (2008). *Introduction to securitization*. New Jersey: John Wiley & Sons, Inc.
- Finnerty, J. D. (2007). *Project financing: Asset-based financial engineering*. New Jersey: John Wiley & Sons, Inc.
- Gatti, S. (2008). *Project finance in theory and practice*. London: Elsevier.
- HBS Website. HBS project finance portal. Last retrieved March 2011 from http://www.people.hbs.edu/besty/projfinportal/
- Major Projects Association Website. Major projects. Last retrieved March 2011 from www.majorprojects.org
- Tan, W. (2007). *Principles of project and infrastructure finance*. London: Taylor & Francis Group.
- Yescombe, E. R. (2002). *Principles of project finance*. Amsterdam: Academic Press.

Additional Examples

<u>Model 1</u>: R&D Decision Making – Risk adjusted NPV for uncertain, multi-stage program w/ sensitivity analysis

Method

- Set of triangular random variables processed through Monte Carlo simulation

What is achieved

- Most likely cost of multi-stage R&D program (NPV) based on range of possible costs, range of possible timelines and associated probabilities with associated confidence level
- Regression tornado graph showing relative sensitivities of major factors (i.e.: how NPV effected by standard deviation changes in key variables): thus shows where most fruitful / sensitive value stages are in terms of achieving higher NPV and reducing costs

- Cost (investment) for each stage, time required for each stage, final revenues, WACC; (for each variable: best, worst and most likely scenarios with probability for each)
- GANTT project breakdown
- Basic understanding of probabilities of success, time, etc.

<u>Model 2</u>: R&D Decision Making – Optimal decision making path given range of directions / decisions 1

- Method
 - Decision tree analysis (real options / derivatives analysis)

What is achieved

- Breakdown of optimal NPV based on range of possible decisions
- Understanding of most rational (in terms of NPV) decision given choice to proceed or abandon an initiative with uncertain final outcome

- Understanding of key management decisions to be made given range of possible decision paths
- Investments (costs) associated, probabilities of success, and profits from each decision

<u>Model 3</u>: R&D Decision Making – Optimal decision making path given range of directions / decisions 2

Method

- Binomial tree analysis (real options / derivatives analysis)
- What is achieved
 - Current NPV incorporating value of option to expand or abandon
 - More structured / detailed breakdown than Decision Tree (yes/no decisions only and equal time spans)
 - Breakdown of optimal NPV based on range of possible decisions: optimal decision path
 - Understanding of most rational (in terms of NPV) decision given choice to proceed or abandon an initiative with uncertain final outcome

- Understanding of key decisions to be made given range of possible decision paths
- Decision points with yes/no, values, probabilities of success
- Investments (costs) associated, probabilities of success, and profits from each decision

<u>Model 4</u>: R&D Decision Making – Project portfolio optimization (above and beyond NPV-driven criteria)

- Method
 - Analytic Hierarchy Process and Optimization
- What is achieved
 - Determines relative importance of set of project objectives in a portfolio context
 - Resource usage (i.e.: cost, man hours) required for each project
 - Optimal scoring of projects within portfolio based on total benefit and bearing in mind resource constraints
 - Understanding of how changing input parameters effects total benefit achievable

- Relevant objectives for each project in portfolio
- Weighting scores for each objective attached to each project (i.e.: NPV, Market Growth, Likelihood of Technical Success, Likelihood of Regulatory Approval)
- Cost, work hours required, NPV

Example: R&D Project Optimization

				Likelihood			
				of	Likelihood		
			Market	Technical	of FDA		
		NPV	Growth	Success	Approval		
1	Outstanding	0.585994	0.521739	0.589041	0.523742		
2	Above Average	0.217956	0.26087	0.228373	0.2708		
3	Average	0.123565	0.130435	0.119212	0.1354		
4	Below Average	0.072485	0.086957	0.063375	0.070058		
						Likelihood of	Likelihood
					Market	TechnicalSucces	of FDA
Score	Project	Cost	Manhours	NPV	Growth	s	Approval
0.211	1	300	500	4	1	3	2
0.151	2	250	600	3	2	4	3
0.155	3	350	550	3	3	2	2
0.220	4	380	750	2	3	3	1
0.193	r	400	050	0	4	2	2
	5	120	850	2	4	2	2
0.264	5	420	950	2	4	1	3
0.264 0.238	6 7	420	950 950 400	2	4 2 1	1	3
0.264 0.238 0.403	5 6 7 8	420 360 260	950 950 400 1100	2 2 3 1	4 2 1 2	1 3 2	3 2 4
0.264 0.238 0.403 0.423	5 6 7 8 9	420 360 260 180	950 400 1100 1200	2 2 3 1	4 2 1 2 3	1 3 2 1	2 3 2 4 3

<u>Model 5</u>: R&D Decision Making – Modeling New Product Profitability

Method

Triangular random variable, regression analysis, sensitivity analysis, simulation

What is achieved

- Estimation of profitability and 'riskiness' of new product
- Incorporates uncertainties / ranges such as development cost, development timeline, sales life, market size, market share, price, and variable cost

Data / variables required

 Ranges for: development cost, development timeline, sales life, market size, market share, price, and variable cost

<u>Model 6</u>: Cost Analysis – Resolving Cost of Producing Product

Method

- Sampling, regression analysis and optimization

What is achieved

- Based on sampled (incomplete, generalized and/or global) component cost information, determine optimized total cost of product production
- Given incomplete information on costing, regression analysis alows for targeted product costing with statistical confidence level

- Data on cost components of product
- Sample data on cost components (can also be based on similar / related processes)

<u>Model 7</u>: Product Pricing – New Product Profitability Simulation

Method

- Simulation based on uncertain market parameters

What is achieved

- Estimates average profitability and riskiness of new products
- Gives confidence probability of holding certain market size
- Projected revenues
- NPV projection with confidence levels
- Sensitivity analysis (Tornado Graphs) concerning most impactful factors effecting NPV
- Scenario analysis with optimal scenario profiles

- Number of potential customers
- Growth rates for market (with confidence level)
- Entry point of competition and variable effect on market share (with probability)

When is managerial flexibility highest?

Flexibility value greatest when:

- High uncertainty about the future Very likely to receive new information over time
- High room for managerial flexibility Allows management to respond appropriately to this new information
- NPV without flexibility near zero
 If a project is neither obviously good
 nor obviously bad, flexibility to
 change course is more likely to be
 used and therefore is more valuable

Under these conditions, the difference between options valuation and other decision tools is substantial

Option value determined by...

Real Option Analysis Process

Steps	1. Compute base case present value without flexibility using DCF	2. Model the uncertainty using event trees	3. Identify and incorporate managerial flexibilities creating a decision tree	4. Calculate option value	
Objectives	Compute base case present value without flexibility at t = 0	Understand how the present value develops with respect to the changing uncertainty	Analyzing the event tree to identify and incorporate managerial flexibility to respond to	Value the total project using a simple algebraic methodology and spreadsheet	
		Choose multiplicative or additive stochastic process	new information		
Comments	Traditional present value without flexibility	Still no flexibility; this value should equal the value from Step 1 Explicitly estimate uncertainty	Flexibility is incorporated into event trees, which transforms them into decision trees	Option value method will include the base case present value without flexibility plus the option (flexibility) value	
			The flexibility has altered the risk characteristics of		
			the project, therefore the cost of capital has changed	Under high uncertaint and managerial flexibility option value will be substantial	

Contact Details

Advanced Analytics

The standard of excellence as a one-stop-shop for full service advanced analytics solutions.

Scott Mongeau Manager Analytics Deloitte Risk Services, Netherlands <u>smongeau@deloitte.nl</u> +31 (0)6 125 802 83