

Palisade Live Webcast

Refining the Business Case for Sustainable Energy Projects Using Palisade @RISK and PrecisionTree: A Biofuel Plant Case Study

8:00 PST / 11:00 EST / 16:00 GMT / 17:00 CET Thursday, January 12th 2012 **Originally presented March 29th 2011 Palisade Conference - Amsterdam, Netherlands**

Scott Mongeau

Lead Consultant

SARK7 BV

Phone +31 6 42 353 427

Email scott@sark7.com

Web www.sark7.com

All original content ©2012 SARK7 BV All material and images used for nonprofit educational presentation purposes only!

Biomatica BV

Biomatica BV

Welkom in Amsterdam

<u>Context</u>

- Below sea level (-4M)
 www.fragilecologies.com/sep29_06.html
- Dutch East India Co. (VOC) (1602)
 - Globalization
 - Genesis of modern stock exchange
 - Derivatives (futures & options)
 - Perpetuities

• Overview

- 1. Profitable sustainable energy projects
- 2. Palisade as facilitating tool
- 3. Biofuel project as example

• Scott Mongeau

- Independent int'l consultant (NL-based)
- Decision & risk analysis
- www.linkedin.com/in/smongeau

http://blog.sunan-ampel.ac.id/auliyaridwan/

©2009 USA Today

Global Energy: Outlook for Change

Depletion of fossil fuels

• Finite resource

Æ

- Growing demand
- Declining reserves
 - 50 years left at rate of *current consumption*
 - Peak production: 2015 *
 - **2016** onwards:
 - several % per year decline
 - 2030 onwards:
 dramatic supply crisis / gap
 +30% primary energy needed
- Costly exploration: deep sea, oil sands, polar
- 2/3 new exploration wells drilled are dry

World Energy Sources *

- Fossil (86%)
 - Petroleum (~40%)
 - Coal (~23%)
 - Natural gas (~23%)
 - Bitumens
 - Oil shales
 - Tar sands
- Nuclear (8%)

• Renewable (6%)

- Biomass
- Hydro
- Wind
- Solar (thermal & photovoltaic)
- Geothermal
- Marine

• Exotic hypotheticals

Biomatica BV

Growing Demand + Growing Cost of Recovery

http://www.feasta.org/documents/energy/rationing2007.htm

Biomatica BV

Uncertainty: Timing of Decline?

http://www.eia.doe.gov/pub/oil_gas/petroleum/feature_articles/2004/worldoilsupply/oilsupply04.html

- 2000 Global Supply Analysis: US Geological Survey (USGS) and US Energy Information Administration (EAI)
- Steady global demand growth trend of 2% per year (highest trend in developing world, India & China in particular)
- Reserves to Production (R/P) ratio of 10 (US) used for all nations as 'peak level'
- Three scenarios use varying recoverable reserve estimates remaining, in Billions of Barrels (BBbls)
- Asymmetric 'plunging' decline hypothesized

Slide 7

<u>Uncertainty</u>: Marginal Tipping Point?

- 'Energy return on energy invested' (EROEI) ratio
 - Oil: 16-to-1 (and falling)
 - Tar sands: 7-to-1?
 - BioEthanol: 4-to-1? Negative?
- Unknown point: where marginal cost of next average barrel of oil yields less energy than alternative sources?
- Compounded issue of systematized efficiencies related to oil value chain (i.e. refining, transport, trading)
- Political risk: waiting causes oil marginal value to reduce while development costs for alternatives remains high
- 'Boiling frog' syndrome

http://www.motherearthnews.com/renewable-energy/net-energy-zm0z10zrog.aspx

Systematized dependence

- Embedded surcharge attached to virtually all transactions
- Systemic efficiencies have evolved via market forces

Pushing the envelope

- Deep sea drilling
- Oil sands
- Polar exploration
- Regional military pressures

Alternative solutions

- Will remain marginal if 'one offs'
- Need for deep systemic economic analysis and engineering (financial)

• Oil industry: biofuel plays (liquid)

- Shell & Cosan
- BP & Verenium
- Chevron & Weyerhaeuser

Sean Gallup/Getty Images

http://www.topnews.i n/law/region/tripoli

http://tinyurl.com/6hbuyrg

Libya's oil exports

http://oilandglory.foreignpolicy.com/category/wordpress_tag/saudi

Biomatica BV

Sustainability & Palisade Decision Suite

TOOLKIT...

- Simulation
- Sensitivity analysis
- Optimization
- Correlation
- Econometrics
- Decision Trees
- Real Options

- Plant / processing optimization
- Commodity price uncertainty
- Cost control
 - Sampling, regression analysis and optimization
- Integrated FCF / NPV analysis
- R&D decision / project management
 - Monte Carlo sensitivity analysis for uncertain, multi-stage programs
 - Decision tree analysis to determine best path
 - Project portfolio optimization via analytic hierarchy process and optimization
- Commercialization/market simulation
 - Modeling new product profitability via regression & sensitivity analysis, simulation
- Competition & product pricing
 - New product profitability simulation
 - Simulation based on uncertain market competition parameters

Modeling Method: Staged Process

Uncertainty Categorization

- 1. Process(es) to employ
 - Associated <u>costs?</u>
- 2. Product strategy
 - Associated <u>revenues</u>?
- 3. Revenue forecasting
 - Competition, economic factors?
- 4. Process cost analysis
 - Productivity <u>variability</u>?
- 5. R&D planning / decision making
 - What decisions, made when?

- B
 C
 D
 E

 65
 760
 2009
 2011
 2011

 65
 1.40
 1.40
 1.40
 1.40
 1.40

 Vest & Enzymes @ GPC location
 0.66 / 1.01
 1.66 / 1.01
 1.66 / 1.01
 1.66 / 1.01
 1.66 / 1.01

 Indextacent: termeration @ GPC
 0
 0.68 / 1.72
 1.01
 1.02
 1.72

 Callisbast: Ethana [Mtv)
 0
 0.00
 0.02
 2.02
 1.72
 1.01
 1.72

 Callisbast: Ethana [Mtv)
 0
 0.01
 0.02
 0.02
 0.02
 0.02
 0.02
 0.02
 0.02
 0.02
 0.01
 1.01
 1.01
 1.01
 1.01
 1.01
 1.01
 1.01
 1.02
 1.02
 1.02
 1.02
 1.02
 1.02
 1.02
 1.02
 1.02
 1.02
 1.02
 1.02
 1.02
 1.02
 1.02
 1.02
 1.02
 1.02
 1.02
 1.02
 1.02
 1.02
 1.02
 1.02
 1.02
 1.02
 1.02
 1.02
 <t
- 1. Valuation (NPV) analysis
- Three processes
- Product strategies
- 2. Volatility simulation
- Monte-Carlo simulation
- 3. Real Options Analysis
- Use range of NPV end-points
- Add additional probabilities
- Add key decision points

Practical Implementation

<u>METHODS</u>

- Qualitative: comprehensive interviews & stakeholder mapping
- Quantitative: multivariate uncertainty aggregation, correlation
- Techniques: Monte Carlo simulation, computational optimization, formal decision analysis, sensitivity analysis, optimization, regression analysis, econometrics...

ORGANIZATIONAL

- Decision portfolio management
- Decision Trees = managerial flexibility
- Decision architecture / audits
 - 'The Decision-Driven Organization' Harvard Business Review, June 2010

• Ethanol (EtOH)

- Blended into petrol (most autos can run on 10% blend)
- 5.4% ethanol component in global gasoline (2008)
- 90% world supply produced between US & Brazil
- Increasingly target of mandates & subsidies
- Basic process similar to beer brewing
- Particular processes, feedstock, catalysts & agents vary
- •1st gen
 - Feedstock-based (i.e. corn, sugarcane) => backlash!
- •2nd gen
 - Cellulose-based: structural component green plants & algae
 - Most common organic compound: ~33% of all plant matter
 - Indigestible by humans
- •3rd gen
 - Genetically altered microbal agents => still in lab stages

Modeling: Operating EtOH Plant

- PPE costs
- Capital costs per gal output
- EtOH & byproduct prices
- Feedstock costs

- Enzyme and yeast pricing
- Fixed & variable oper. costs
- Byproduct / subsidy
- Terminal value

Financing		Feedstock		Pretreatment		Enzymes		Fermentation			tion	Ethanol		Market		
Percent Financed	40%	CS Conv (g/m	it) 3] Low		CS conv factor (gal/mt)	80.00000	Enzyme Pricing	* 1] Base	Yea	st Pricing	1] Base		CEtOH Pricing	4] Historic		
LT Interest Rate	7.5%	Most Likely		80.00	CS conv factor (t/gal)	0.01250	Most Likely	\$ 0.25	Max	timum	S	0.08	Most Likely	\$ 1.97	NPV	\$ 392,598,978
Equity Return(ROR)	7.5%	Lowest		78.00	CS per EtOH conc cost	\$ 0.67	Minimum	\$ 0.15	Mos	t Likely	\$	0.07	Minimum	\$ 1.77	IRR	20%
Tax Credit Years	s 0.20	nignest		02.00	Total processing cost	\$ 1.11	Maximum	\$ 0.50	MINI	mum	2	0.00	Maximum	\$ 2.10	% Elect Sold	10%
Corn Tax Rate	30%	CS \$Mt dry	11 Base				wzjązydrzico-tj								76 LIECT SUID	10%
PPE Cost Basis	11 DSM Basis	Most Likely	S	45.00												
Total SPPE	\$ 189 686 053	Lowest	s	30.00												
Base WACC	7.5%	Highest	S	50.00												
Tax WACC	6.6%															
Operative WACC	Base WACC															
Nameplate factor	\$ 2.25															
Plant scale (mgy)	120				Salary Cost / yr	\$4,266,606										
\$		*														

Sensitivity & Optimization

- Dynamic NPV analysis
- Probability distributions for all major variables
- Multiple outcome simulations run (1000's of times)
- Aggregate probabilities and sensitivities emerge

Figure 7.4: The rapeseed oil price distribution

Figure 7.5: The diesel price distribution

Volatility of Project NPV Outcome

Sensitivity Analysis: Tornado Graph

Cost Anlysis & Optimization

Slide 22

23

% Chance of Positive NPV

Sharpe Ratios (Profit vs. Risk)

Slide 23

Integrative: Structured Finance

• Structured finance / project finance

- Insulates sponsor from risk during development
- Isolates asset liabilities from balance sheet
- Funds R&D via external investment
- Vehicle for debt guarantees & subsidies

Pre-negotiated contracts

- All contracts pre-negotiated
- Lowers project risk for investors and banks
- Consequently lowers cost of funding / capital
- Restricts potential downside and upside (acts as hedge)

Biomatica BV

Slide 25

Strategic: Decision Tree Analysis

- 1. Add management decision points, investments required, and probabilities (i.e.: chance of technical success)
- 2. NPV valuation of each node in scenarios (DCF)
- 3. Work backwards to probabilistic 'inherent value' of management option to expand/contract at each step
- 4. Choose for highest NPV value at each decision point
- 5. Revise as probabilities, decisions, and values as time progresses

<u>PrecisionTree</u>: Proof-of-Concept

PrecisionTree: Commercialization

Slide 28

23

Natural Capitalism

Status quo: 'the lurking crisis'

- 1. 'Business as usual' approaches & models
- 2. Token populist and cynically reductive responses
- 3. Survival thinking / rationing
- 4. Lack of 'systemic' vision & leadership

Lovins, Lovins & Hawken. A Road Map for Natural Capitalism. Harvard Business Review, July – August 2007.

Shifts advocated in business practices

- 1. Increase productivity of natural resources
- 2. Shift to biological production models
- 3. Solutions-based business models
- 4. Reinvest in natural capital
- Solutions are at hand require systemic thinking, deep analysis & coordination

Concluding Themes

Economic phenomenon

- Drive to marginal optimality
- Perverse incentives
- 'The tragedy of the commons' and free-riders

Sustainability project characteristics

- Marginally profitable
- Highly sensitive
- Requires systemic engineering / optimization

Coordinated management of systemic complexity

- Core NPV variance analysis
- Profitable systemic market scenarios

• Leadership gap:

- Transcend politics and sentiment
- Need for market-based solutions
- 2030 syndrome
 - Outside democratic political cycle
 - Outside career cycle
- Palisade evolution: Multi-Agent Simulations

Biomatica BV

Source: Economist Staff, September 2nd 2010

References: Palisade Suite

- Murtha, J. (2008). *Decisions involving uncertainty: an @RISK tutorial for the petroleum industry*. Ithaca, New York, USA: Palisade Corporation.
- Rees, M. 2008. *Financial modelling in practice*. Wiltshire, UK: Wiley.
- Schuyler, J. 2001. *Risk and decision analysis in projects*. Pennsylvania, USA: Project Management Institute, Inc.
- Winston, W. 2007. *Decision making under uncertainty*. Ithaca, New York, USA: Palisade Corporation.
- Winston, W. 2008. *Financial models using simulation and optimization*. Ithaca, New York, USA: Palisade Corporation.
- Winston, W. 2008. *Financial models using simulation and optimization II*. Ithaca, New York, USA: Palisade Corporation.

References: Sustainability

- Campbell, C., and Laherrère, J. (1998, March). *The end of cheap oil?* Scientific American, March 1998.
- Demirbas, A. (2009). *Biofuels: securing the planet's future energy needs*. London: Springer.
- Demirbas, A. (2008). *Biodiesel: a realistic fuel alternative for diesel engines*. London: Springer.
- Economist Staff. (June 2010). *Inhuman genomes*. The Economist, June 17, 2010. Retrieved September 2010 from <u>http://www.economist.com/node/16349380</u>
- Economist Staff. (September 2010). *Ethanol's mid-life crisis*. The Economist, September 2nd 2010. Retrieved September 2010 from <u>http://www.economist.com/node/16952914?story_id=16952914</u>
- Hawken, P., Lovins, A., and Lovins, L. H. (2008). *Natural capitalism: creating the next industrial revolution*. New York: Back Bay Books.
- Johnson, M. W., and Suskewicz, J. (2009, November). *How to jump-start the cleantech economy*. Harvard Business Review, November 2009. Last retrieved March 2011 from <u>http://hbr.org/2009/11/how-to-jump-start-the-clean-tech-</u> <u>economy/ar/1</u>
- Lovins, A. B., Lovins, L. H., and Hawken, P. (2007, July). A road map for natural capitalism. Harvard Business Review, July August 2007. Last retrieved March 2011 from <u>http://hbr.org/2007/07/a-road-map-for-natural-capitalism/ar/1</u>

References: Decision Mgmt/Real Options

- Arnold, T. & Shockley Jr., R. (2001). Value creation at Anheuser-Busch: a real options example. *Journal of Applied Corporate Finance*, 14 (2), 52-61.
- Blenko, M. W., Mankins, M. C., & Rogers, P. (2010, June). The decision-driven organization. Harvard Business Review, June 2010, p 54 62.
- Faulkner, T. (1996). Applying 'options thinking' to R&D valuation. Research Technology Management, May – June, 50-56.
- Hammond, J. S., Keeney, R. L., and Raiffa, H. (1999). Smart Choices: A Practical guide to Making Better Decisions. Boston: Harvard Business School Press.
- Kodukula, P., & Papudesu, C. (2006). *Project Valuation Using Real Options*. Florida, USA: J. Ross Publishing, Inc.
- McGrath, R., & Nerkar, A. (2004). *Real Options reasoning and a new look at the R&D investment strategies of pharma firms*. *Strategic Management Journal*, 25.
- Mun, J. (2006). *Real Options Analysis* (2nd ed.). New Jersey, USA: John Wiley.
- Shockley, R., Jr., Curtis, S., Jafari, J., & Tibbs, K. (2001). *The option value of an early-stage biotechnology investment*. *Journal of Applied Corporate Finance*, 15 (2), 44-55.