Cellulosic Bioethanol Plant Simulator: Managing Uncertainty in Complex Business Environments

Thursday April 15th, 2010 14:15 – 15:00 The Waterloo

Scott Mongeau

Founder & Lead Consultant **Biomatica BV**

Erasmus Rotterdam School of Management (RSM)

- Masters of Financial Management (MFM) alumni
- Global Executive OneMBA

Mobile: +31 (0)6 42 353 427

E-mail: scott@biomatica.com

Web: www.biomatica.com

Orientation

• Scope

- Orientation
- Model composition & logistics
- Demonstration & analysis
- Real Options Analysis
- Next steps
- Questions / comments

Background

- Biomatica BV => Biotech: IT / Finance / RISK Mgmt / Bus Dev
- Erasmus RSM Finance internship: European materials conglomerate
- Biofuel project: Decision Making via Real Options & simulation

Sustainability: Biofuel Industry

- Long standing
- Tight margins
- New technologies (rapidly changing)
- Complex engineering
- Intertwined private and public aspect
- High risk investment
- Management of uncertainty
- i.e. 'extreme' oil industry projects
- 'Doing good'?!

©2009 USA Today

Cellulosic BioEthanol (CEtOH) • Cellulose

- Cell structural component in green plants & algae
- Approx 33% of all plant matter
- Most common existing organic compound
- Indigestible by humans

• Ethanol (EtOH)

- Blended into petrol (most autos can run on 10% blend)
- -5.4% ethanol in global gasoline (2008)
- -90% produced between US & Brazil
- Increasingly target of mandates & subsidies
- Trading market forming
- Process similar to beer brewing

CEtOH Production Process

Processing/transformation of cellulosic-rich feedstock (i.e.: switchgrass, wood pulp, algae) into simple sugars suitable for subsequent fermentation

Operating Biofuel Plant Context

Managing Uncertainty Analysis Process

Uncertainties Categorized

- 1. Target process(es) to employ
 - Associated costs?
- 2. Product strategy
 - Associated revenues?
- 3. Revenue forecasting
 - Competition, economic factors?
- 4. Process cost analysis
 - Productivity variability?
- 5. R&D planning / decision making
 - What decisions, made when?

Process Defined

- 1. NPV analysis
- Three processes
- Product strategies
- 2. Volatility simulation

- Monte-Carlo simulation **3. Real Options Analysis**
- Use range of NPV end-points
- Add volatility (probability)
- Add key decision points

<u>ViBeS</u>: Virtual Bioethanol Simulator

- US NREL research
- U of Oklahoma CEtOH calculator
- Iterative development working with industry experts

<u>ViBeS</u>: Virtual Bioethanol-plant Simulator

<u>ViBeS</u>: Virtual Bioethanol Simulator – Key Figures

- PPE cost basis
- Nameplate (CAPEX \$/gal output)
- Feedstock conversion factor (gal/mt)
- Feedstock cost
- Enzyme and yeast pricing
- EtOH market price
- Byproduct / subsidy

- 90 distributions
- 10 year project
- Terminal & nonterminal values
- Normal, triangle & trend distributions

Financing	Feedstock	Pretreatment	Enzymes	Fermentation	Ethanol	Market
Percent Financed 40%	CS Conv (g/mt) 3] Low	CS conv factor (gal/mt) 80.00000	Enzyme Pricing* 1] Base	Yeast Pricing 1] Base	CEtOH Pricing 4] Historic	
LT Interest Rate 7.5%	Most Likely 80.00	CS conv factor (t/gal) 0.01250	Most Likely \$ 0.25	Maximum \$ 0.08	Most Likely \$ 1.97	NPV \$ 392,598,978
Tay Credit Vears 3	Highest 82.00	Total processing cost \$ 1.11	Maximum S 0.30	Minimum S 0.06	Maximum S 216	IRR 20%
Tax Credit (\$/gal) \$ 0.20	Tightat 02.00	Total processing cost of 1.11	*W2/IMaa/E(CH)			% Elect Sold 10%
Corp Tax Rate 30%	CS \$Mt dry 1] Base					
PPE Cost Basis 1] DSM Basis	Most Likely \$ 45.00					
Total \$PPE \$ 189,686,053	Lowest \$ 30.00					
Base WACC 7.5%	Highest \$ 50.00					
Tax WACC 6.6%						
Operative WACC Base WACC						
Nameplate factor \$ 2.25						
Plant scale (mgy) 120		Salary Cost / yr \$4,266,606				
\$						N

ViBeS: Virtual Bioethanol Simulator

Financing	Feedstock	Pretreatment	Enzymes	Fermentation	Ethanol	Market
Percent Financed 40% LT Interest Rate 7.5% Equity Return(ROR) 7.5% Tax Credit (\$/gal) \$ 0.20 Corp Tax Rate 30% PPE Cost Basis 11 DSM Basis Total \$PPE \$ 189,686,053 Base WACC 7.5% Tax WACC 6.6% Operative WACC Base WACC Nameplate factor \$ 2.25 Plant scale (mgy) 120	CS Conv (g/mt) 3] Low Most Likely 80.00 Lowest 78.00 Highest 82.00 CS \$Mt dry 1] Base Most Likely \$ 45.00 Lowest \$ 30.00 Highest \$ 50.00	CS conv factor (gal/mt) 80.00000 CS conv factor (t/gal) 0.01250 CS per EtOH conc cost \$ 0.67 Total processing cost \$ 1.11 Salary Cost / yr \$ 4,266,806	Enzyme Pricing* 1] Base Most Likely \$ 0.25 Minimum \$ 0.15 Maximum \$ 0.30 * W2/Mga/E10Hy ************************************	Yeast Pricing 1] Base Maximum \$ 0.08 Most Likely \$ 0.07 Minimum \$ 0.06	CEtOH Pricing 4] Historic Most Likely \$ 1.97 Minimum \$ 1.77 Maximum \$ 2.16	NPV \$ 392,598,978 IRR 20% % Elect Sold 10%
\$	*					Ŷ

Model Development Process

- Interviews of scientists & engineers
- Reductive, appreciate complexity & 'completeness'
- Iterative development (cycles of 'review and revise')
- Education concerning model mechanics
- Tendency to speculate concerning econometrics
- •Organizational considerations:
 - Risk appetite
 - Available corporate functionality (i.e.: advanced hedging)

Monte-Carlo Analysis Example

Simulation: Regression Coefficients - Identifying NPV Key Drivers

- Euro/\$ exchange rate (earlier version)
- OPEX costs (enzymes, yeasts) to productivity factor

Real Options Analysis

- Thesis project RSM MFM:
 - 'Decision Support via Real Options Analysis'
- 95% solid valuation / Monte Carlo
- ROA as a decision making process
 - Management buy-in/trust factor crucial
 - Requires 'optionality' paradigm understanding
 - Transparency
 - Agency factors
- R&D project management

Example: Biofuel Plant Decision Tree

- 1. Add management decision points, investments required, and probabilities
- 2. NPV valuation of each node in scenarios (DCF)
- Work backwards to probabilistic 'inherent value' of management option to expand/contract at each step
- 4. Choose for highest NPV value at each decision point
- 5. Revise as probabilities, decisions, and values as time progresses

Precision Tree Implementation

Take-Aways

- Clarify 'known unknowns'
 - Between CAPEX & OPEX
 - Overall profitability
 - Key CAPEX & OPEX reduction technical targets
 - Productivity
 - -Value of co-product , subsidy, and recovery
- Useful for focusing discussions
 - Internal decision making
 - Partnership discussions
 - Investment analysis
 - Market dynamics

Conclusions

• CEtOH production not clearly profitable yet

- Technology developing...
- Sensitive to subsidies and mandates
- Need to keep major stakeholders 'dancing'

Outsized concerns

- Oil (EtOH) & feedstock costs
- ForEx, interest rate (CoC), inflation
- Susceptible to hedging and focused control

Scale

- Assumes proportional scalar CAPEX and OPEX...
- Observable profitability benefit to scale (to 200 mgy)
- Additional benefits of regional scale: feedstock/EtOH market-making
- Anecdotal supporting evidence in brewery industry

Recommendations

- Where are we today?
 - Sustainability & 'shareholder' business model legacy
- Difficulty bootstrapping sustainability projects
 - Marginal profits
 - Catch 22: Subsidy ⇔ R&D ⇔ Investment
 - Complex relation: CAPEX, OPEX, financing, dep...
- Advice
 - Credit crisis: insight into systemic risks...
 - Sustainability: reverse engineer & manage systemic risk
 - Bring systemic conversations together
 - Bring agency interests together (megaproject risk mgmt)
 - Organizational need for actionable risk management (RR)

Possible Future Simulation Development

- Fermentation
- Extended market competition simulation
- Real Options Analysis process
 - R&D project decision making process
 - Project risk management
- Partnership & co-investment analysis
- Deeper economic & econometric analysis

Example: Fermentation Simulation

Example: Market Competition Simulation

Source: US Department of Energy: http://www1.eere.energy.gov/biomass/integrated_biorefineries.html

References

- Dr. Michael Rees, Palisade's Global Director of Training and Consulting '*Financial Modelling in Practice*' (John Wiley & Sons, 2008)
- Aden, Ruth, Ibsen, Jechura, Neeves, Sheehan, Wallace, Montague, Slayton,&Lukas 'Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover' (NREL, 2002)

END

Biomatica BV