

2011 Palisade Risk Conference

Refining the Business Case for Sustainable Energy Projects Using Palisade @RISK and PrecisionTree: A Biofuel Plant Case Study

10:00 – 10:45 Tuesday, March 29th 2011

Scott Mongeau

Lead Consultant

Biomatica BV

Cell +31 (0)6 42 353 427

Email scott@biomatica.com

Web www.biomatica.com

Compagnieszaal West Indische Huis, Amsterdam

All original content ©Biomatica BV 2011 Attributed sources used for nonprofit educational presentation purposes only

1. Overview

2. Global energy quandy

3. Palisade Suite approaches

4. Biofuel plant case exemplar

5. Concluding comments

6. Questions and comments

7. Appendix: References

1. Overview

2. Global energy quandy

3. Palisade Suite approaches

4. Biofuel plant case exemplar

5. Observations & comments

6. Concluding comments

7. Appendix: References

Welkom in Amsterdam!

• Where are we?

- Dutch East India Co. (VOC) (1602)
 - Globalization
 - Genesis of modern stock exchange
 - Derivatives (futures & options)
 - Perpetuities
- Below sea level (-4M)

- 1. Profitable sustainable energy projects
- 2. Palisade as facilitating tool
- 3. Biofuel project as example

Scott Mongeau

- Independent int'l consultant (NL-based)
- Decision and risk management
- Strategy, analysis, simulation, systems
- Finance, biotech, insurance, start-ups
- www.linkedin.com/in/smongeau

http://blog.sunan-ampel.ac.id/auliyaridwan/

©2009 USA Today

1. Overview

2. Global energy quandy

3. Palisade Suite approaches

4. Biofuel plant case exemplar

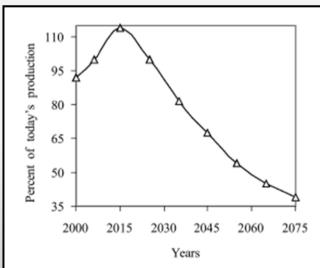
5. Concluding comments

6. Questions and comments

7. Appendix: References

Global Energy: Outlook for Change

Depletion of fossil fuels

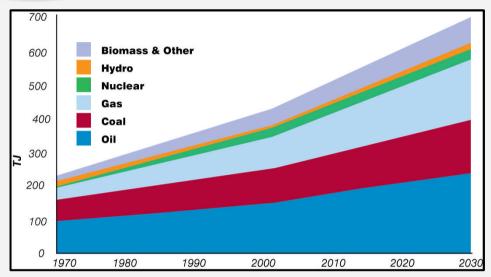

- Finite resource
- Growing demand
- Declining reserves
 - 50 years left at rate of current consumption
 - Peak production: 2015 *
 - **2016** onwards: several % per year decline
 - 2030 onwards:dramatic supply crisis / gap+30% primary energy needed
- Costly exploration: deep sea, oil sands, polar
- 2/3 new exploration wells drilled are dry

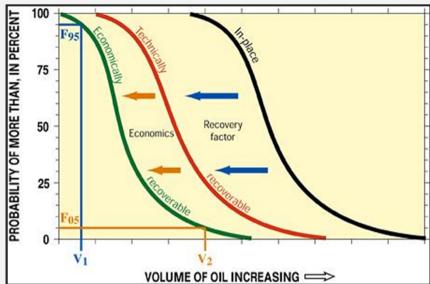
World Energy Sources *

- Fossil (86%)
 - Petroleum (~40%)
 - Coal (~23%)
 - Natural gas (~23%)
 - Bitumens
 - Oil shales
 - Tar sands
- Nuclear (8%)

- Renewable (6%)
 - Biomass
 - Hydro
 - Wind
 - Solar (thermal & photovoltaic)
 - Geothermal
 - Marine
- Exotic hypotheticals

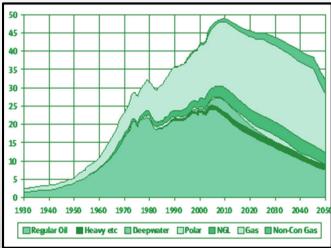
^{* 2006} figures: Demirbas, A. (2008). Biofuels.





Reuters / US Coast Guard

Growing Demand + Growing Cost of Recovery



Source: OECD/IEA World Energy Outlook 2004

http://www.world-nuclear.org/education/ueg.htm

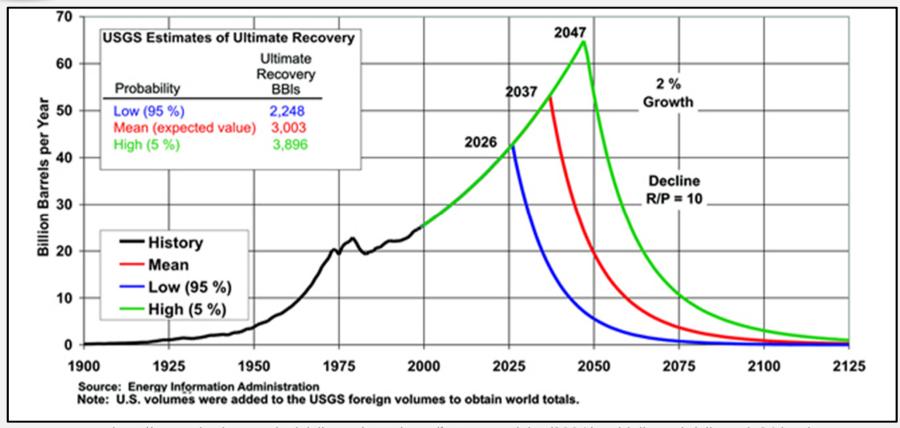
Geopolitical

- Middle East: 63% global reserves
- Growth world population
- Growth developing nations

http://www.feasta.org/documents/energy/rationing2007.htm

http://en.wikipedia.org/wiki/Oil_reserves

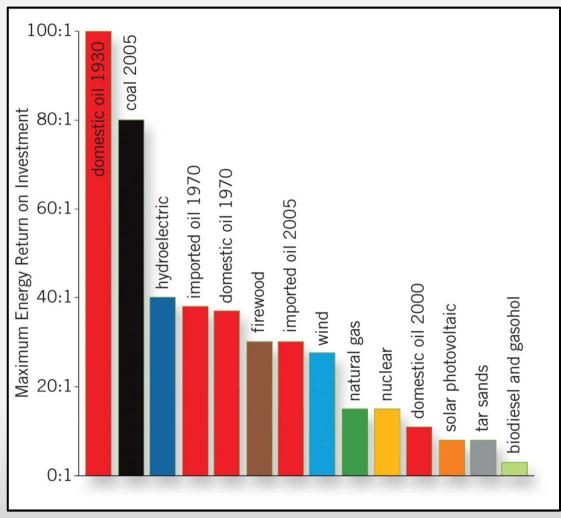
Environmental


- Carbon emissions (98% from fossils)
- Greenhouse effect

1950: *315 PPM CO*₂

2010: 390 PPM CO₂

Uncertainty: Timing of Decline?


http://www.eia.doe.gov/pub/oil_gas/petroleum/feature_articles/2004/worldoilsupply/oilsupply04.html

- 2000 Global Supply Analysis: US Geological Survey (USGS) and US Energy Information Administration (EAI)
- Steady global demand growth trend of 2% per year (highest trend in developing world, India & China in particular)
- Reserves to Production (R/P) ratio of 10 (US) used for all nations as 'peak level'
- Three scenarios use varying recoverable reserve estimates remaining, in Billions of Barrels (BBbls)
- Asymmetric 'plunging' decline hypothesized

Uncertainty: Marginal Tipping Point?

- 'Energy return on energy invested' (EROEI) ratio
 - Oil: 16-to-1 (and falling)
 - Tar sands: 7-to-1?
 - BioEthanol: 4-to-1? Negative?
- Unknown point: where marginal cost of next average barrel of oil yields less energy than alternative sources?
- Compounded issue of systematized efficiencies related to oil value chain (i.e. refining, transport, trading)
- Political risk: waiting causes oil marginal value to reduce while development costs for alternatives remains high
- 'Boiling frog' syndrome

http://www.motherearthnews.com/renewable-energy/net-energy-zm0z10zrog.aspx

Energy and Realpolitiks...

Systematized dependence

- Embedded surcharge attached to virtually all transactions
- Systemic efficiencies have evolved via market forces

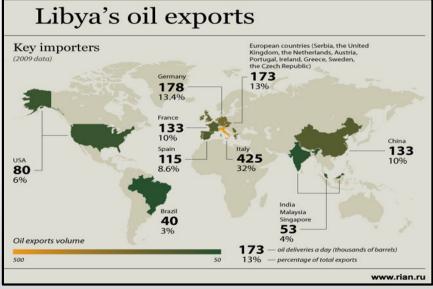
Pushing the envelope

- Deep sea drilling
- Oil sands
- Polar exploration
- Regional military pressures

Alternative solutions

- Will remain marginal if 'one offs'
- Need for deep systemic economic analysis and engineering (financial)

• Oil industry: biofuel plays (liquid)


- Shell & Cosan
- BP & Verenium
- Chevron & Weyerhaeuser

http://www.topnews.i n/law/region/tripoli

Sean Gallup/Getty Images

http://tinyurl.com/6hbuyrg

http://oilandglory.foreignpolicy.com/category/wordpress_tag/saudi

Slide 10

1. Overview

2. Global energy quandy

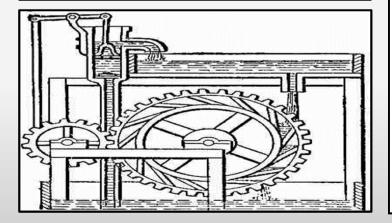
3. Palisade Suite approaches

4. Biofuel plant case exemplar

5. Concluding comments

6. Questions and comments

7. Appendix: References

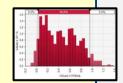


Sustainability & Palisade Decision Suite

TOOLKIT...

- Simulation
- Sensitivity analysis
- Optimization
- Correlation
- Econometrics
- Decision Trees
- Real Options

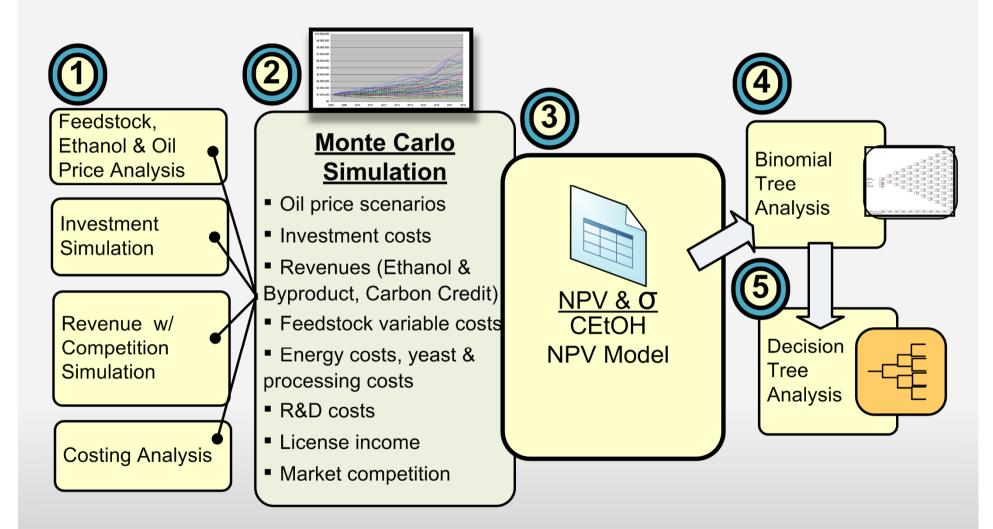
- Plant / processing optimization
- Commodity price uncertainty
- Cost control
 - Sampling, regression analysis and optimization
- Integrated FCF / NPV analysis
- R&D decision / project management
 - Monte Carlo sensitivity analysis for uncertain, multi-stage programs
 - Decision tree analysis to determine best path
 - Project portfolio optimization via analytic hierarchy process and optimization
- Commercialization/market simulation
 - Modeling new product profitability via regression & sensitivity analysis, simulation
- Competition & product pricing
 - New product profitability simulation
 - Simulation based on uncertain market competition parameters


Modeling Method: Staged Process

Uncertainty Categorization

- 1. Target process(es) to employ
 - Associated costs?
- 2. Product strategy
 - Associated <u>revenues</u>?
- 3. Revenue forecasting
 - Competition, economic factors?
- 4. Process cost analysis
 - Productivity <u>variability</u>?
- 5. R&D planning / decision making
 - What <u>decisions</u>, made when?

Analytical Process


- 1. Valuation (NPV) analysis
- Three processes
- Product strategies
- 2. Volatility simulation
- Monte-Carlo simulation
- 3. Real Options Analysis
- Use range of NPV end-points
- Add volatility (probability)
- Add key decision points

Integrated Analysis for Sustainability Projects

Slide 13 Biomatica BV

Practical Implementation

METHODS

- Qualitative: comprehensive interviews & stakeholder mapping
- Quantitative: multivariate uncertainty aggregation, correlation
- Techniques: Monte Carlo simulation, computational optimization, formal decision analysis, sensitivity analysis, optimization, regression analysis, econometrics...

ORGANIZATIONAL

- Decision portfolio management
- Decision Trees = managerial flexibility
- Decision architecture / audits
 - 'The Decision-Driven Organization' Harvard Business Review, June 2010

Slide 14 Biomatica BV

1. Overview

2. Global energy quandy

3. Palisade Suite approaches

4. Biofuel plant case exemplar 🔼

5. Concluding comments

6. Questions and comments

7. Appendix: References

Overview: BioEthanol

Ethanol (EtOH)

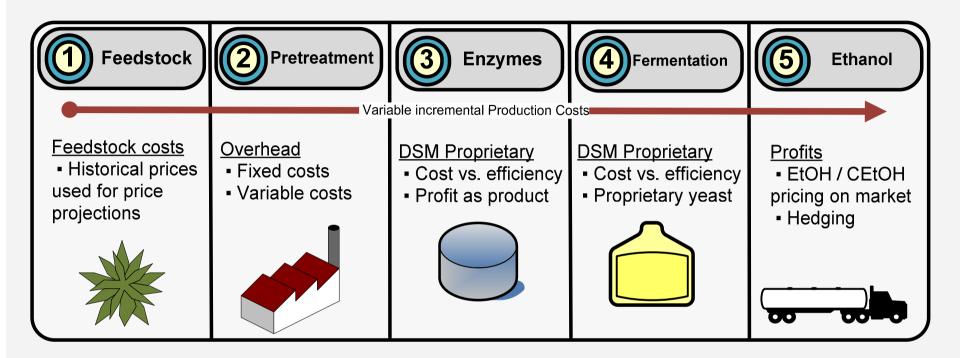
- Blended into petrol (most autos can run on 10% blend)
- 5.4% ethanol component in global gasoline (2008)
- 90% world supply produced between US & Brazil
- Increasingly target of mandates & subsidies
- Basic process similar to beer brewing
- Particular processes, feedstock, catalysts & agents vary

•1st gen

- Feedstock-based (i.e. corn, sugarcane) => backlash!

•2nd gen

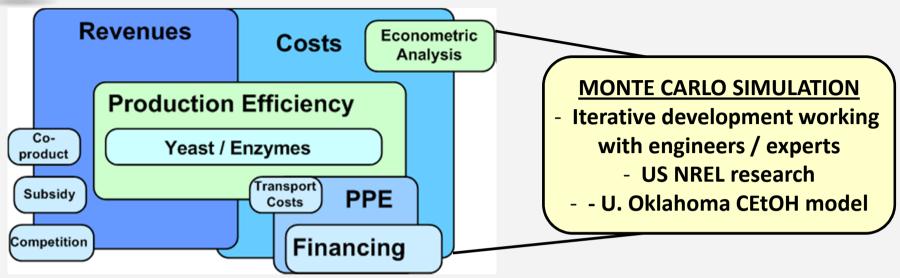
- Cellulose-based: structural component green plants & algae
- Most common organic compound: ~33% of all plant matter
- Indigestible by humans

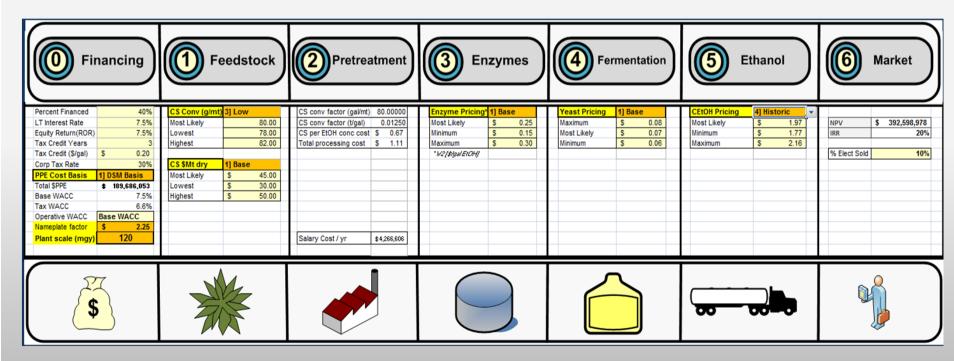

•3rd gen

Genetically altered microbal agents => still in lab stages

Biomatica BV

Modeling: Operating EtOH Plant


- PPE costs
- Capital costs per gal output
- EtOH & byproduct prices
- Feedstock costs


- Enzyme and yeast pricing
- Fixed & variable oper. costs
- Byproduct / subsidy
- Terminal value

Slide 17 Biomatica BV

Sensitivity & Optimization

Sensitivity & Optimization

- Dynamic NPV analysis
- Probability distributions for all major variables
- Multiple outcome simulations run (1000's of times)
- Aggregate probabilities and sensitivities emerge

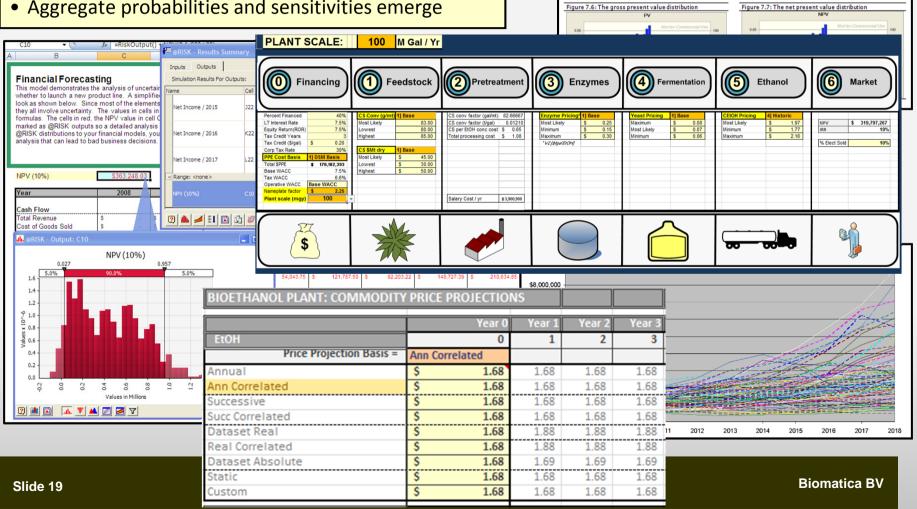
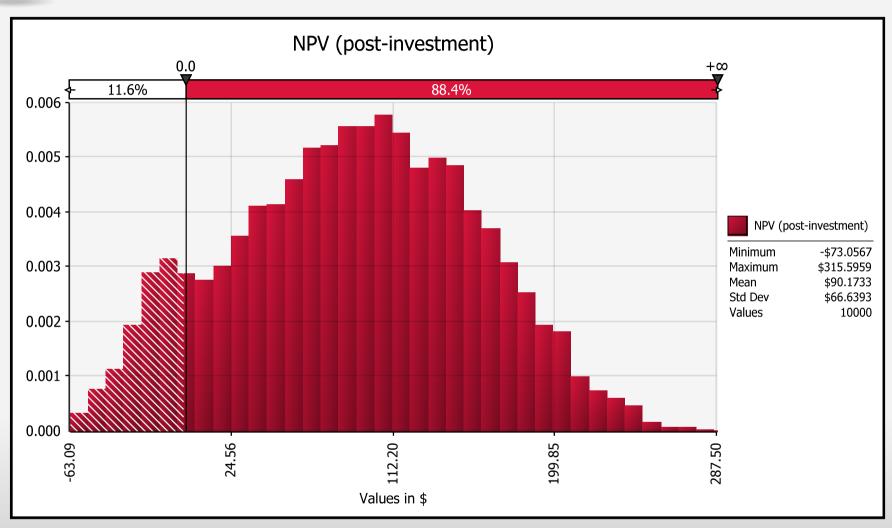
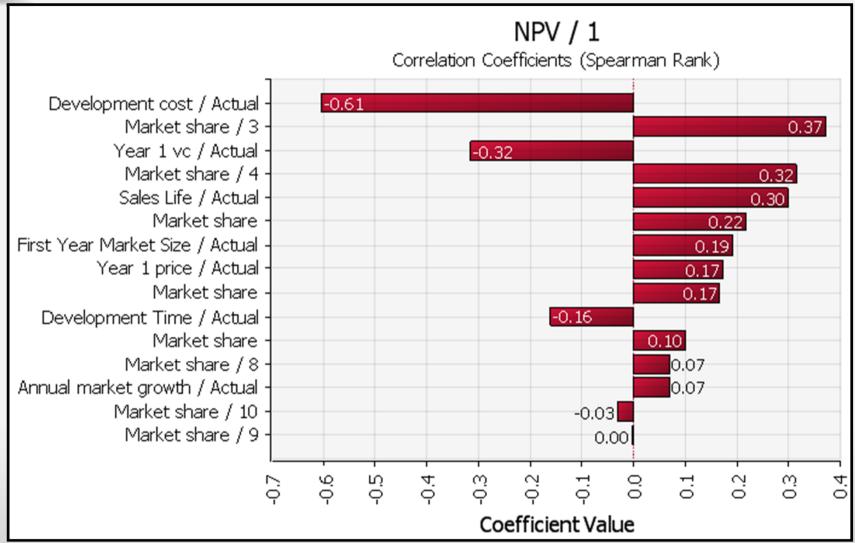
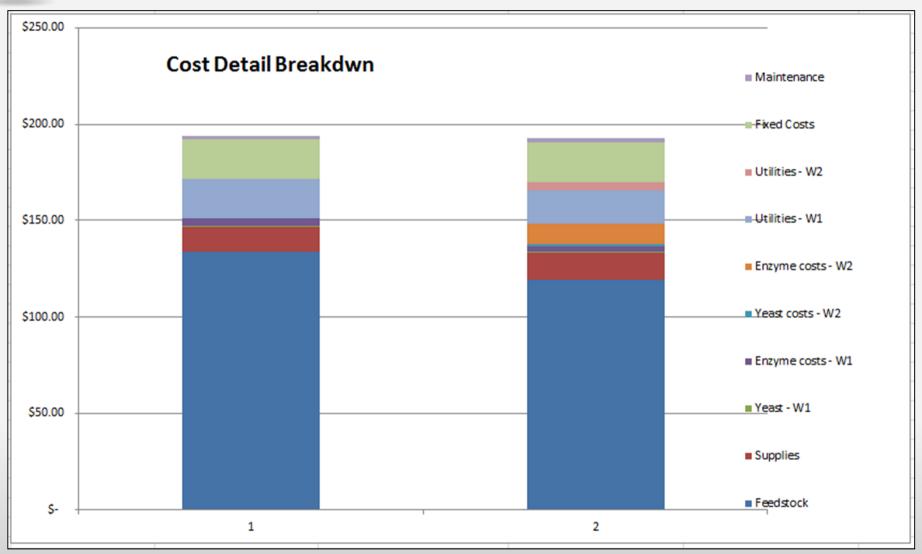



Figure 7.4: The rapeseed oil price distribution

Figure 7.5: The diesel price distribution

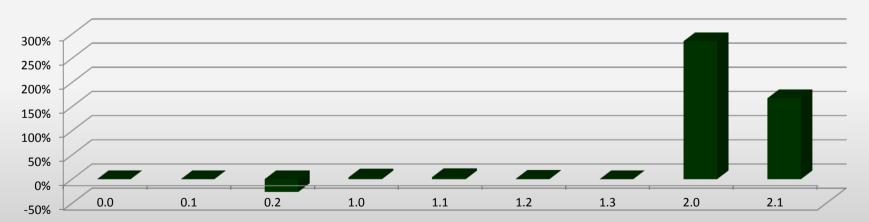

Volatility of Project NPV Outcome

Biomatica BV

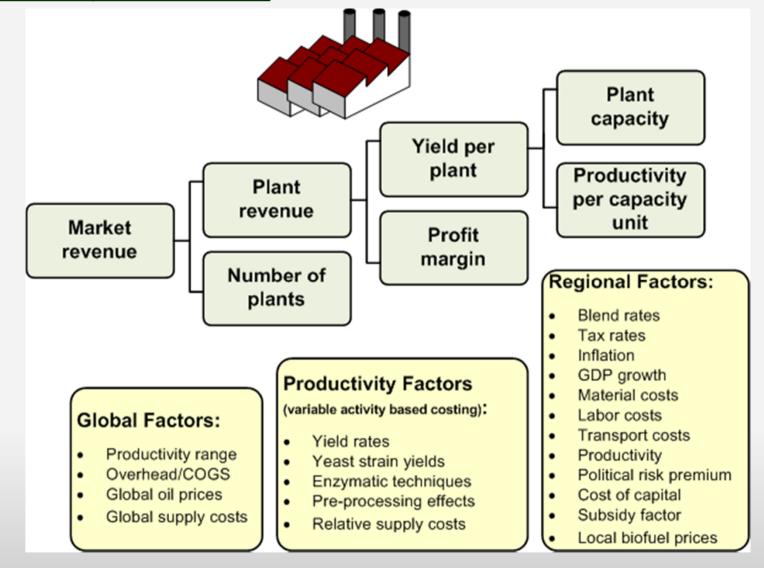


Sensitivity Analysis: Tornado Graph

Cost Anlysis & Optimization



Risk Optimization: Profit vs. Risk

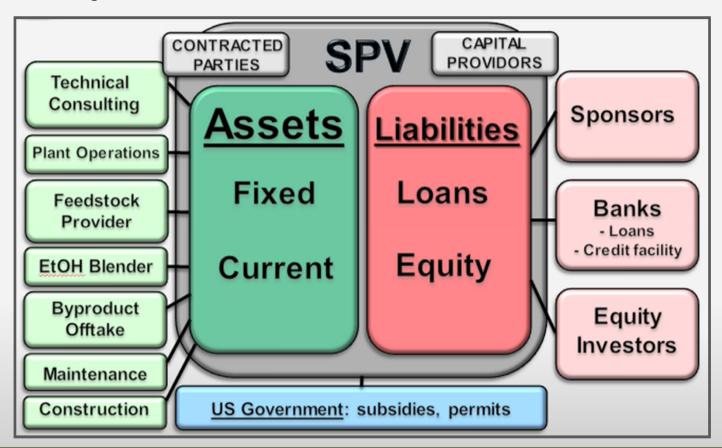

% Chance of Positive NPV

Sharpe Ratios (Profit vs. Risk)

Comparative: Commercialization

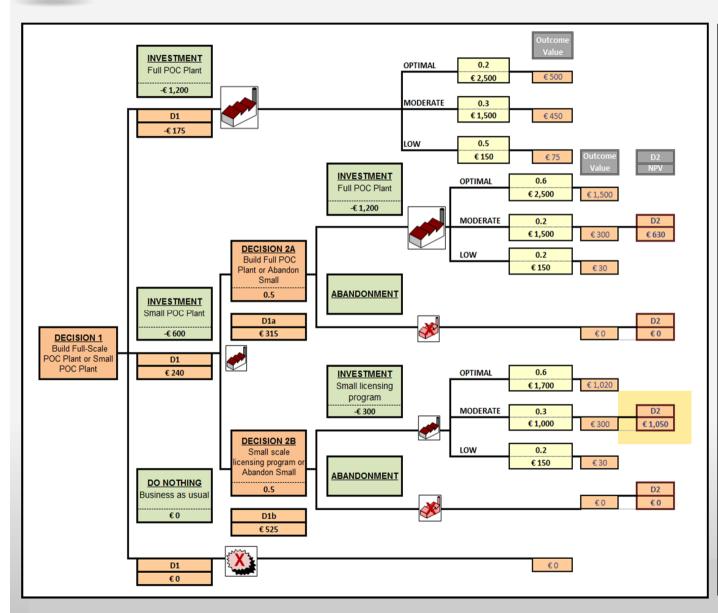
Biomatica BV Slide 24

Slide 25


Integrative: Structured Finance

Structured finance / project finance

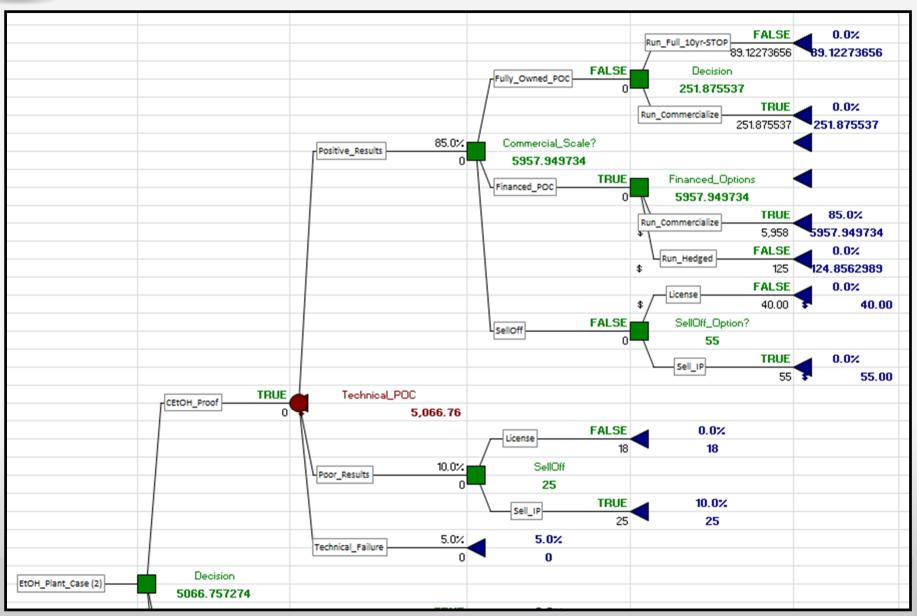
- Insulates sponsor from risk during development
- Isolates asset liabilities from balance sheet
- Funds R&D via external investment
- Vehicle for debt guarantees & subsidies


• Pre-negotiated contracts

- All contracts pre-negotiated
- Lowers project risk for investors and banks
- Consequently lowers cost of funding / capital
- Restricts potential downside and upside (acts as hedge)

Strategic: Decision Tree Analysis

- 1. Add management decision points, investments required, and probabilities (i.e.: chance of technical success)
- 2. NPV valuation of each node in scenarios (DCF)
- 3. Work backwards to probabilistic 'inherent value' of management option to expand/contract at each step
- 4. Choose for highest NPV value at each decision point
- Revise as probabilities, decisions, and values as time progresses



PrecisionTree: Proof-of-Concept

PrecisionTree: Commercialization

1. Overview

2. Global energy quandy

3. Palisade Suite approaches

4. Biofuel plant case exemplar

5. Concluding comments

6. Questions and comments

7. Appendix: References

Natural Capitalism

Status quo: 'the lurking crisis'

- 1. 'Business as usual' approaches & models
- 2. Token populist and cynically reductive responses
- 3. Survival thinking / rationing
- 4. Lack of 'systemic' vision & leadership

Lovins, Lovins & Hawken. A Road Map for Natural Capitalism. Harvard Business Review, July - August 2007.

Shifts advocated in business practices

- 1. Increase productivity of natural resources
- 2. Shift to biological production models
- 3. Solutions-based business models
- 4. Reinvest in natural capital
- Solutions are at hand require systemic thinking, deep analysis & coordination

Slide 30 Biomatica BV

Concluding Themes

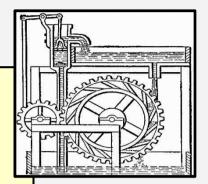
Economic phenomenon

- Drive to marginal optimality
- Perverse incentives
- 'The tragedy of the commons' and free-riders

Sustainability project characteristics

- Marginally profitable
- Highly sensitive
- Requires systemic engineering / optimization

Coordinated management of systemic complexity


- Core NPV variance analysis
- Profitable systemic market scenarios

• Leadership gap:

- Transcend politics and sentiment
- Need for market-based solutions

• 2030 syndrome

- Outside democratic political cycle
- Outside career cycle
- Palisade evolution: Multi-Agent Simulations

1. Overview

2. Global energy quandy

3. Palisade Suite approaches

4. Biofuel plant case exemplar

5. Concluding comments

6. Questions and comments

7. Appendix: References

Questions? Comments!

Slide 33 Biomatica BV

7. REFERENCES

Source: Economist Staff, September 2nd 2010

References: Palisade Suite

- Murtha, J. (2008). *Decisions involving uncertainty: an @RISK tutorial for the petroleum industry*. Ithaca, New York, USA: Palisade Corporation.
- Rees, M. 2008. *Financial modelling in practice*. Wiltshire, UK: Wiley.
- Schuyler, J. 2001. *Risk and decision analysis in projects*. Pennsylvania, USA: Project Management Institute, Inc.
- Shockley, R., Jr., Curtis, S., Jafari, J., & Tibbs, K. 2001. **The option value of an early-stage biotechnology investment**. *Journal of Applied Corporate Finance*, 15 (2), 44-55.
- Winston, W. 2007. *Decision making under uncertainty*. Ithaca, New York, USA: Palisade Corporation.
- Winston, W. 2008. *Financial models using simulation and optimization*. Ithaca, New York, USA: Palisade Corporation.
- Winston, W. 2008. *Financial models using simulation and optimization II*. Ithaca, New York, USA: Palisade Corporation.

Slide 35 Biomatica BV

References: Sustainability

- Campbell, C., and Laherrère, J. (1998, March). *The end of cheap oil?* Scientific American, March 1998.
- Demirbas, A. (2009). *Biofuels: securing the planet's future energy needs*. London: Springer.
- Demirbas, A. (2008). *Biodiesel: a realistic fuel alternative for diesel engines*. London: Springer.
- Economist Staff. (June 2010). *Inhuman genomes*. The Economist, June 17, 2010. Retrieved September 2010 from http://www.economist.com/node/16349380
- Economist Staff. (September 2010). *Ethanol's mid-life crisis*. The Economist, September 2nd 2010. Retrieved September 2010 from http://www.economist.com/node/16952914?story_id=16952914
- Hawken, P., Lovins, A., and Lovins, L. H. (2008). *Natural capitalism: creating the next industrial revolution*. New York: Back Bay Books.
- Johnson, M. W., and Suskewicz, J. (2009, November). *How to jump-start the clean-tech economy*. Harvard Business Review, November 2009. Last retrieved March 2011 from http://hbr.org/2009/11/how-to-jump-start-the-clean-tech-economy/ar/1
- Lovins, A. B., Lovins, L. H., and Hawken, P. (2007, July). A road map for natural capitalism. Harvard Business Review, July August 2007. Last retrieved March 2011 from http://hbr.org/2007/07/a-road-map-for-natural-capitalism/ar/1

Slide 36 Biomatica BV

References: Decision Mgmt/Real Options

- Arnold, T. & Shockley Jr., R. (2001). Value creation at Anheuser-Busch: a real options example. Journal of Applied Corporate Finance, 14 (2), 52-61.
- Blenko, M. W., Mankins, M. C., & Rogers, P. (2010, June). **The decision-driven organization**. Harvard Business Review, June 2010, p 54 62.
- Faulkner, T. (1996). **Applying 'options thinking' to R&D valuation**. *Research Technology Management*, May June, 50-56.
- Hammond, J. S., Keeney, R. L., and Raiffa, H. (1999). **Smart Choices: A Practical guide to Making Better Decisions**. Boston: Harvard Business School Press.
- Kodukula, P., & Papudesu, C. (2006). *Project Valuation Using Real Options*. Florida, USA: J. Ross Publishing, Inc.
- McGrath, R., & Nerkar, A. (2004). *Real Options reasoning and a new look at the R&D investment strategies of pharma firms*. *Strategic Management Journal*, 25.
- Mun, J. (2006). *Real Options Analysis* (2nd ed.). New Jersey, USA: John Wiley.
- Shockley, R., Jr., Curtis, S., Jafari, J., & Tibbs, K. (2001). *The option value of an early-stage biotechnology investment*. *Journal of Applied Corporate Finance*, 15 (2), 44-55.

Slide 37 Biomatica BV