Cybersecurity Data Science (CSDS) Best Practices in an Emerging Profession

Scott Allen Mongeau INFORMS CAP[®]

Cybersecurity Data Scientist – SAS Institute PhD candidate - Nyenrode Business University, Netherlands

s.mongeau@edp1.nyenrode.nl scott@sark7.com scott.mongeau@sas.com

@SARK7 #CSDS2020

All opinions herein are my own, not those of my employ No rights claimed or implied to 3rd party materia Copyright © 2020 Scott Mongeau All rights reserve

INTRODUCTION

~30 years

- IT / data analysis and data management
- Statistics, analytics, simulation, data science...
- Cybersecurity Data Science
 - SAS Institute & Deloitte (~7 yrs)
- Technical & management consulting
 - Bio-pharma, telecom, finance, public sector
 - Military, defense, intelligence, security, policing
- Guest lecturer / PhD candidate
 - Nyenrode University, Netherlands

Cybersecurity Data Science (CSDS): Best Practices in an Emerging Profession Scott Mongeau, EDP PhD candidate

Scott Allen Mongeau

Cybersecurity Data Scientist – SAS Institute PhD candidate Nyenrode Business University (Netherlands)

s.mongeau@edp1.nyenrode.nl scott.mongeau@sas.com

@SARK7 #CSDS2020

LEADERSHIP, ENTREPRENEURSHIP, STEWARDSHIP Cybersecurity Data Science (CSDS): Best Practices in an Emerging Profession Scott Mongeau, EDP PhD candidate

I. Research Overview
II. Literature
III. Interviews
IV. Designs
V. Conclusions

LEADERSHIP, ENTREPRENEURSHIP, STEWARDSHIP

I. Research Overview

Copyright © 2019 Scott Mongeau All rights reserved.

PhD academic research / book~July 2020 release

Research on cybersecurity data science (CSDS) as an emerging profession

I. <u>Literature</u>: What is CSDS? Status as a profession?

- II. <u>Interviews</u>: 50 CSDS practitioners
- **III.** <u>Designs</u>: Approaches to address challenges

Cybersecurity Data Science: Best Practices in an Emerging Profession

Scott Mongeau

D Springer

PhD academic research / book

Research on cybersecurity data science (CSDS) as an emerging profession

- What is data science with respect to cybersecurity?
 - Professionalization maturity / best practices gap diagnosis
- Triangulated mixed methods
 - Qualitative and quantitative (inductive focus)
 - Literature review, interview coding, text analytics
- Gap analysis leading to design prescriptions

Practitioner Diagnostic & Design Research

Management of Information Systems (MIS)

Haag & Cummings, 2012 Hsu, 2013 Laudon & Laudon, 2017 Pearlson, Saunders, & Galletta, 2016 Sousa & Oz, 2014

II. CSDS Literature

Copyright © 2019 Scott Mongeau All rights reserved.

FUD Fear, Uncertainty, Doubt

Expansion of exposure and targets >!< Increasing sophistication, frequency, and speed of attacks

Castle and Moat

How quaint!

"Bad news, Your Majesty—it's a cyberattack."

Data Science

New hope amidst complexity and confusion...

AGAIN 7 and U.

<u>CSDS</u>: Existing Professionals + Demonstrated Efficacy

https://www.sas.com/en_us/whitepapers/ponemonhow-security-analytics-improves-cybersecuritydefenses-108679.html

* Survey of 621 global IT security practitioners

Derived Professionalization Assessment Model

Professional maturity

- Systematic body of theory
 Authority and judgement
- recognized by client
- 3 Community sanctions authority
- 4 Ethical code of stewardship
- 5 Professional culture supported by associations

Greenwood, E. (1957). Attributes of a Profession. *Social Work, 2*, 11.

Van der Krogt, T. (2015). Professionals and Their Work.

Professional emergence

1	Active, focused interest from diverse participants
2	Active professionals with associated job titles & roles
3	Emerging and informal training
4	Informal professional groups
5	Professional and industry literature
6	Research literature
7	Formalized training
8	Formal professional groups
9	Professional certifications
10	Standards bodies
11	Independent academic research disciplinary focus

Beer, J. T., & Lewis, W. D. (1963). Aspects of the Professionalization of Science. *The MIT Press*, *92*(4), 20.

Freidson, E. (2001). *Professionalism: The Third Logic*. Cambridge, MA, U.S.: Polity Press.

PROFESSION DATA SCIENCE

The Blessing and Curse of Data Science

PROS

- Commercial interest
 - Range of methods
- Freedom to experiment
 - Delivers efficiencies
 - Big data engineering
 - Insightful questions
- Power of machine learning

CONS

- 🔶 Hype & noise
 - Befuddling array of approaches
 - Lack of standards
 - Myth of automation
 - Big data ipso facto is not solution
 - Wait, what is the question?
 - "Throwing the statistical baby out with grampa's bathwater?"

<u>Phantom Patterns</u>: Correlation ≠ Causation

The Ghost of Christmas Overfitting comes to visit

Are you or a friend addicted to predictive machine learning?

Key warning signs:

- Throwing 800 variables into a model and running with a good ROC score
- Need to retrain your model every three weeks?
- "Explanation!? We don't need no stinkin' explanation!"

If so, call 1-800-DIAGNOSTICS now!

CSDS Body of Literature (book length works)

1	Machine Learning and Data Mining for Computer Security: Methods and Applications	* Maloof ed., 2006	13	How to Measure Anything in Cybersecurity Risk	Hubbard & Seiersen, 2016	
2	Intrusion Detection: A Machine Learning Approach	Yu & Tsai, 2011	14	Data Analytics and Decision Support for Cybersecurity	* Carrascosa, Kalutarage, & Huang eds., 2017	
3	Data Mining and Machine Learning in Cybersecurity	Dua & Du, 2011	15		Edgar & Manz, 2017	
4	Network Anomaly Detection: A Machine Learning Perspective	Bhattacharyya & Kalita, 2013				
5	Applied Network Security Monitoring	Sanders & Smith, 2013	16	Introduction to Machine Learning with Applications in Information Security	Stamp, 2017	
6	Network Security Through Data Analysis	Collins, 2014	17	Information Fusion for Cyber-Security Analytics	* Alsmadi, Karabatis, & AlEroud eds., 2017	
7	Data Analysis for Network Cyber-Security	* Adams & Heard eds., 2014	<mark>18</mark>	Machine Learning & Security	Chio & Freeman, 2018	
8	Data-Driven Security	Jacobs & Rudis, 2014	19	Data Science for Cybersecurity	Heard, Adams, Rubin-Delanchy, & Turcotte eds., 2018	
9		Baesens, Van Vlasselaer,	20	Al in Cybersecurity	* Sikos ed., 2018	
	Social Network Techniques	& Verbeke, 2015	21	Malware Data Science: Attack Detection and Attribution	Saxe & Sanders, 2018	
10	Essential Cybersecurity Science	Dykstra, 2016				
11	Dynamic Networks and Cyber-Security	Adams & Heard, 2016 *	22	Machine Learning for Computer and Cyber Security	* Gupta & Sheng eds., 2019	
12	Cybersecurity and Applied Mathematics	Metcalf & Casey, 2016	23	Cybersecurity Analytics	Verma & Marchette, 2019	

Email me if there is a CSDS book you feel should be added! <u>scott@sark7.com</u>

				1											
		Focused Use Cases	Risk Quantification	Decision Support	Data Management	Data Collection	Scientific Methods	eature ingineering	Statistical Methods	Anomaly Detection	Machine Learning	Model Management	Visualization	Adversarial Methods	Organizational Management
Intrusion Detection: A Machine Learning Approach	Yu & Tsai, 2011	~							1	1	> <			~	
Data Mining and Machine Learning in Cybersecurity	Dua & Du, 2011	~		~	1			~	1	1		~	1		
Network Anomaly Detection: A Machine Learning Perspective	Bhattacharyya & Kalita, 2013	~		~		~		<u>_</u>	4	1	~	~	1	~	
Applied Network Security 4 Monitoring	Sanders & Smith, 2013	~	~	~	1	~		×	\sim	\sim			1		~
Network Security Through Data 5 Analysis	Collins, 2014	~		~	~	~	Dol					2000	<- E(<u></u>	
Data Analysis for Network Cyber-Security	Adams & Heard, 2014 *	~		~		~			•		cover	•		U70	
7 Data-Driven Security	Jacobs & Rudis, 2014	1	1	1	1	1	● Ri	sk ai	lant	ifica	tion:	50%			1
Fraud Analytics Using	Baesens, Van						1.11	JK YC	ant	meu	cion.	5070			
Descriptive, Predictive, and Social Network Techniques	Vlasselaer, & Verbeke, 2015	~	~	~	1	~	• Da	ata m	nana	igen	nent:	50%			~
9 Science	Dykstra, 2016	~	1	~	~		• Sc	ienti	fic n	neth	ods:	25%			4
Dynamic Networks and Cyber- 10 Security	Adams & Heard, 2016 *	~	~										onti	250/	
Cybersecurity and Applied 11 Mathematics	Metcalf & Casey, 2016			1			• 01	gain	Zatio	Jiai	mana	agem	ent.	2570	
How to Measure Anything in 12 Cybersecurity Risk	Hubbard & Seiersen, 2016		1	\checkmark			~		1			~	1		1
Data Analytics and Decision Support for Cybers ecurity	Carrascosa, Kalutarage, & Huang, 2017 *	~	4	~	~	~		~	1	~	~	~	~	~	
Introduction to Machine Learning with Applications in 14 Information Security	Stamp, 2017	1			•			~	1	~	~	~	~	1	
Information Fusion for Cyber- 15 Security Analytics	Alsmadi, Karabatis, & AlEroud, 2017 *	1	\checkmark	~	~	~		~	1	1	1	1	1	~	
16 Machine Learning & Security	Chio & Freeman, 2018	~		1	1	~		~	1	1	1	1	✓	1	
Data Science for Cybersecurity	Heard, Adams, Rubin- Delanchy, & Turcotte,	~		~		~		~	~	~	~	~		~	
18 AI in Cybersecurity	Sikos, 2018 *	~		✓	~			1	1		1	1		1	
Malware Data Science: Attack 19 Detection and Attribution	Saxe & Sanders, 2018	~	• ·			~		~	~	~	1	~	1	~	
Machine Learning for 20 Computer and Cyber Security	Gupta & Sheng, 2019 *	√	~	1				~	~	~	~	~		~	
		90%	50%	80%	50%	65%	25%	90%	100%	90%	75%	80%	80%	80%	25%

Table 2.11: CSDS topic coverage across central literature

Calvin.Andrus (2012) Depicts a mash-up of disciplines from which Data Science is derived http://en.wikipedia.org/wiki/File:DataScienceDisciplines.png

'Professional Maturity' Comparison

#	CRITERIA	CYBER	DS	CSDS	CYBER =
1	Broad interest	•	•	•	Growing challenges +
2	People employed	•	•	•	rapid paradigm shift
3	Informal training	•	•	O	
4	Informal groups	•	•	O	
5	Professional literature	•	•	•	DATA SCIENCE =
6	Research literature	•	•		Poorly defined standards "whatever you want it to be!
7	Formal training	•		o	whatever you want it to be
8	Formal prof. groups	•	D	0	
9	Professional certificates	•	o	0	
10	Standards bodies	•	0	0	CSDS = At risk problem child?
11	Academic discipline	•	o	0	At tisk problem child:

CSDS ≈ **Medieval Medicine**?

Medieval Medicine	CSDS
Understandings of basic anatomy	Good knowledge of networking, devices & architectures
Surgical treatments are extremely painful and dangerous	Interventions frequently involve leaches, saws, knives, and hammers
Poor understanding of functional biotic processes and interaction of organs	Security field lacking in strong scientific foundations & general theory
Just about anyone can be a physician	Just about anyone can be a (cybersecurity) data scientist

SCIENCE CYBERSECURITY DATA PROFESSION

SUPPLY

Т

R

A

III. CSDS Interviews

Copyright © 2019 Scott Mongeau All rights reserved.

Participants - Sample

50 participants + 150 years collective CSDS experience (3 yr mean)

- Linked-In search
 - 'cybersecurity' + ('data scientist' or 'analytics')
- ~350 professionals globally
 - Direct outreach
 - Follow-on referrals

Gating to exclude 'ceremonial CSDS'

• i.e. sales, recruiting, marketing, technology strategists

Aspects of methodological integrity addressed in write-up

• i.e. selection bias, representativeness of sample, etc.

Demographic Profile (n=50)

LinkedIn => 350 candidates => 50 participants

* Estimates inferred from LinkedIn profile data

Demographic Profile (n=50)

Current Region

Current Region ¹	n	%
North America	35	70%
Western Europe	10	20%
Eastern Europe	2	4%
Middle East	2	4%
South America	1	2%

22% (n=11) relocated from native region 18% (n=9) relocated to US specifically 10% (n=5) relocated specifically from Asia/Pacific to US

Industry	n	%
Software and services	28	56%
Consulting	7	14%
Finance/financial		
services/insurance	7	14%
Government / military	3	6%
Consumer products	2	4%
Academics / research	2	4%
Telecom	1	2%

Gender	n	%
Male	43	86%
Female	7	14%

CSDS Practitioner Interview Research

Qualitative: 30 minute open response interviews

- **<u>ENTRY</u>**: How did you become involved in domain?
- What <u>TRENDS</u> are emerging?
 What are perceived central <u>CHALLENGES</u>?
 - What are key <u>BEST PRACTICES</u>?
 - **METHODS**: Borrowing from adjacent domains?
 - **THREATS**: Trends on the adversarial side?

Methodology: Interview Topic Labeling (CODING) Inductive Extrapolation and Deductive Refinement

+scientist,science,+activity,+data scientist,cyber
+instance,+positive,false,+false positive,+obtain
+behavior,+anomaly,detection,+attack,false
right,+risk,+day,+case,+aspect
machine,machine learning,learning,+industry,ml
quality,+process,+process,collection,data quality
cyber security,+tool,+little,+hard,malicious
+tool,+integrate,job,+user,knowledge

Topic extraction Agglomerative => multi-doc

Text analytics processing

- Engine: SAS Contextual Analysis
- Natural Language Processing (NLP)
- Latent Semantic Indexing (LSI)
- Singular Value Decomposition (SVD)

training +industry 'machine learning' +apply pretty 'data science' +market analysis ml +area machine +algorithm +domain +defense 'as well' +behavior false +anomaly +positive 'as well' +event +false positive' detection +point well important +solution +automate learning +label

+instance +'false positive' +allow +depend +extract +obtain +amount +'different thing' +add +deal +positive +collect +mention false information +integrate 'yober security' +trend +approach cyber better +business +field +depend +large +know +good +machine +hard +scientist cybersecurity definitely +address +increase +automate +complexity +defense +industry +mention +threat +attacker +issue right +device +tool 'big data' privacy +implement +process +decision +technique +big quality +algorithm +bring +solve difficult +method +year +apply +buy +day money +long +aspect +source +network especially +case right +area +start +bring cybersecurity +big

Concept clustering Divisive => unique doc

Content analytics extrapolated themes

Domain literature: sensitizing concepts

Practitioner review

'Coding' of processed interview transcripts

Key topics (codes)

DATA PREPARATION! 84%

Marketing hype 70%

Establishing context 60%

Labeled incidents (evidence) 56%

CSDS 'CHALLENGES': 11

CODED RESPONSES: Perceived Challenges	Ν	%	0%	50%	100%
CH1: Data preparation (access, volume, integration, quality, transformation, selection)	42	84%			
CH2: Unrealistic expectations proliferated by marketing hype	35	70%			
CH3: Contextual nature of normal versus anomalous behavioral phenomenon	30	60%			
CH4: Lack of labeled incidents to focus detection	28	56%			
CH5: Own infrastructure, shadow IT, and proliferation of exposure	27	54%			
CH 6: Uncertainty leads to ineffective reactive stance	25	50%			
CH 7: Traditional rules-based methods result in too many alerts	25	50%			
CH 8: Program ownership, decision making, and processes	20	40%			
CH 9: Resourcing, developing, & hosting in house	16	32%			
CH 10: Expanding breadth and complexity of cyber domain	16	32%			
CH 11: Policy, privacy, regulatory, and fines	15	30%			

Best Practices: 26 Codes

Manageme ٠ **Training &**

•

0

BP1: Structured data preparation, discovery, engineering processProc storageBP14: Cloud and container-based tools and data storageTechBP2: Building process focused cross- functional teamOrgBP15: Distinct exploration and detection architecturesTechBP3: Cross-training team in data science, cyber, engineeringOrgBP15: Distinct exploration and detection architecturesTechBP4: Scientific method as a processProcBP17: Deriving probabilistic and risk modelsOrgBP4: Scientific method as a processProcBP17: Deriving probabilistic and risk modelsOrgBP6: Vulnerability, anomaly & decision automation to operational capacityTechBP19: Human-in-the-loop reinforcementProcBP7: Data normalization, frameworks & ontologiesTechBP20: Survey academic methods and techniquesOrgOrgBP8: Model validation and transparencyProcBP21: Cyber risk as general enterprise risk & rewardOrgBP9: Data-driven paradigm shift away from rules & signaturesProcBP23: Adding machine learning to SIEMTechBP11: Cyclical unsupervised and supervised machine learningProcBP24: Preventative threat intelligenceOrgYBP12: Address Al hype and unrealistic expectations directlyOrgBP25: Hosting and pushing detection to endpointsTechBP13: Understand down infrastructure & MP13: Understand down infrastructure & MP13: Understand own infrastructure & MP13: Understand own infrastructure & MP13: Understand own infrastructure &OrgBP26: Hosting and pushing detection to endpointsTec		Best practice codes*				1
BP2: Building process focused cross- functional teamOrg architecturesBP15: Distinct exploration and detection architecturesTechBP3: Cross-training team in data science, cyber, engineeringOrgBP16: Participate in data sharing consortiums and initiativesTechBP4: Scientific method as a processProcBP17: Deriving probabilistic and risk modelsOrgBP5: Instill core cyber domain knowledgeOrgBP18: Upper management buy in and supportOrgBP6: Vulnerability, anomaly & decision automation to operational capacityTechBP19: Human-in-the-loop reinforcementProcBP7: Data normalization, frameworks & ontologiesTechBP20: Survey academic methods and techniquesOrgBP8: Model validation and transparencyProcBP21: Cyber risk as general enterprise risk & rewardOrgBP10: Track and label incidents and exploitsProcBP23: Adding machine learning to SIEMTechBP11: Cyclical unsupervised and supervised machine learningProcBP24: Preventative threat intelligenceOrgBP12: Address Al hype and unrealistic expectations directlyOrgBP25: Hosting and pushing detection to endpointsTechBP12: Understand own infrastructure & expectations directlyOrgDrgProcBP13: Understand own infrastructure & expectations directlyOrgTechTech			Proc		Tech	
Cyber, engineeringCyber, engineeringCyber, engineeringCyber, engineeringCyber, engineeringBP4: Scientific method as a processProcBP17: Deriving probabilistic and risk modelsOrgBP5: Instill core cyber domain knowledgeOrgBP18: Upper management buy in and supportOrgBP6: Vulnerability, anomaly & decision automation to operational capacityTechBP19: Human-in-the-loop reinforcementProcBP7: Data normalization, frameworks & ontologiesTechBP20: Survey academic methods and techniquesOrgBP8: Model validation and transparencyProcBP21: Cyber risk as general enterprise risk & rewardOrgBP9: Data-driven paradigm shift away from rules & signaturesOrgBP22: Segment risk programmatically and outsource componentsOrgBP11: Cyclical unsupervised and supervised machine learningProcBP24: Preventative threat intelligenceOrgBP12: Address Al hype and unrealistic expectations directlyOrgBP25: Hosting and pushing detection to endpointsTechBP12: Hudrest and own infrastructure & Method with frastructure & Method with rest and own infrastructure & Method with rest and pushing detection to endpointsTech	2	BP2: Building process focused cross-	Org	BP15: Distinct exploration and detection	Tech	
BP3: Instill core cyber domain knowledge Org BP18: Upper management buy in and support Org BP6: Vulnerability, anomaly & decision automation to operational capacity Tech BP19: Human-in-the-loop reinforcement Proc BP7: Data normalization, frameworks & ontologies Tech BP20: Survey academic methods and techniques Org BP8: Model validation and transparency Proc BP21: Cyber risk as general enterprise risk & reward Org BP9: Data-driven paradigm shift away from rules & signatures Org BP22: Segment risk programmatically and outsource components Org BP10: Track and label incidents and exploits Proc BP23: Adding machine learning to SIEM Tech BP11: Cyclical unsupervised and supervised machine learning Org BP24: Preventative threat intelligence Org BP12: Address Al hype and unrealistic expectations directly Org BP25: Hosting and pushing detection to endpoints Tech BP12: Judgerstand own infrastructure & Org Org Dress: Hosting and pushing detection to endpoints Tech		0	Org		Tech	
BP6: Vulnerability, anomaly & decision automation to operational capacityTechBP19: Human-in-the-loop reinforcementProcBP7: Data normalization, frameworks & ontologiesTechBP20: Survey academic methods and techniquesOrgBP8: Model validation and transparencyProcBP21: Cyber risk as general enterprise risk & rewardOrgBP9: Data-driven paradigm shift away from rules & signaturesOrgBP22: Segment risk programmatically and outsource componentsOrgBP10: Track and label incidents and exploitsProcBP23: Adding machine learning to SIEMTechBP11: Cyclical unsupervised and supervised machine learningProcBP24: Preventative threat intelligenceOrgBP12: Address AI hype and unrealistic expectations directlyOrgBP25: Hosting and pushing detection to endpointsTechBP13: Understand own infrastructure & BP13: Understand own infrastructure &OrgTech		BP4: Scientific method as a process	Proc	BP17: Deriving probabilistic and risk models	Org	
automation to operational capacityBP19: Human-in-the-loop reinforcementBP7: Data normalization, frameworks & ontologiesTechBP20: Survey academic methods and techniquesOrgBP8: Model validation and transparencyProcBP21: Cyber risk as general enterprise risk & rewardOrgBP9: Data-driven paradigm shift away from rules & signaturesOrgBP22: Segment risk programmatically and outsource componentsOrgBP10: Track and label incidents and exploitsProcBP23: Adding machine learning to SIEMTechBP11: Cyclical unsupervised and supervised machine learningProcBP24: Preventative threat intelligenceOrgBP12: Address Al hype and unrealistic expectations directlyOrgBP25: Hosting and pushing detection to endpointsTechBP13: Understand own infrastructure & OrgOrgOrgTech		BP5: Instill core cyber domain knowledge	Org	BP18: Upper management buy in and support	Org	
ontologiesBP20: Survey academic methods and techniquesCBP8: Model validation and transparencyProcBP21: Cyber risk as general enterprise risk & rewardOrgBP9: Data-driven paradigm shift away from rules & signaturesOrgBP22: Segment risk programmatically and outsource componentsOrgBP10: Track and label incidents and exploitsProcBP23: Adding machine learning to SIEMTechBP11: Cyclical unsupervised and supervised machine learningProcBP24: Preventative threat intelligenceOrgYBP12: Address AI hype and unrealistic expectations directlyOrgBP25: Hosting and pushing detection to endpointsTechBP13: Understand own infrastructure & BP13: Understand own infrastructure &OrgTech			Tech	BP19: Human-in-the-loop reinforcement	Proc	
BP 3: Indect valuation and transparency Dr 21: Cycle hisk as general enterprise hisk at revalue Dr BP9: Data-driven paradigm shift away from rules & signatures Org BP22: Segment risk programmatically and outsource components Org BP10: Track and label incidents and exploits Proc BP23: Adding machine learning to SIEM Tech BP11: Cyclical unsupervised and supervised machine learning Proc BP24: Preventative threat intelligence Org Y BP12: Address Al hype and unrealistic expectations directly Org BP25: Hosting and pushing detection to endpoints Tech BP13: Understand own infrastructure & Org Org Tech Tech			Tech	BP20: Survey academic methods and techniques	Org	
rules & signatures components rules BP10: Track and label incidents and exploits Proc BP23: Adding machine learning to SIEM Tech BP11: Cyclical unsupervised and supervised machine learning Proc BP24: Preventative threat intelligence Org Y BP12: Address AI hype and unrealistic expectations directly Org BP25: Hosting and pushing detection to endpoints Tech BP13: Understand own infrastructure & Org Tech Tech Tech		BP8: Model validation and transparency	Proc	BP21: Cyber risk as general enterprise risk & reward	Org	
BP10: Track and rabel incidents and exploits BP23: Adding inactime learning to Sittivity BP11: Cyclical unsupervised and supervised machine learning Proc BP24: Preventative threat intelligence Org BP12: Address Al hype and unrealistic expectations directly Org BP13: Understand own infrastructure & Org Org		, , ,	Org	5 I 5 /	Org	
machine learning BP24: Preventative threat intelligence II BP12: Address AI hype and unrealistic expectations directly Org BP25: Hosting and pushing detection to endpoints Tech BP13: Understand own infrastructure & Org Tech Tech		BP10: Track and label incidents and exploits	Proc	BP23: Adding machine learning to SIEM	Tech	
expectations directly BP25: Hosting and pushing detection to endpoints actices~		<i>,</i> , , , , , , , , , , , , , , , , , ,	Proc	BP24: Preventative threat intelligence	Org	Y
BP13: Understand own infrastructure & Org BP26: Honourats to track and observe adversaries. Tech			Org	BP25: Hosting and pushing detection to endpoints	Tech	actices~
environment BP26: Honeypots to track and observe adversaries			Org	BP26: Honeypots to track and observe adversaries	Tech	lization

Architecture-driven solutions

CSDS 'BEST PRACTICES': 26

DATA PREPARATION! 84%

RESPONSES: Advocated best practices	Family	Ν	X
BP1: Structured data preparation, discovery, engineering process	Proc	42	84%
BP2: Building process focused cross-functional team	Org	38	76%
BP3: Cross-training team in data science, cyber, engineering	Org	37	74%
BP4: Scientific method as a process	Proc	34	68%
BP5: Instill core cyber domain knowledge	Org	33	66%
BP6: Vulnerability, anomaly & decision automation to operational capacity	Tech	33	66%
BP7: Data normalization, frameworks & ontologies	Tech	32	64%
BP8: Model validation and transparency	Proc	31	62%
BP9: Data-driven paradigm shift away from rules & signatures	Org	29	58%
BP10: Track and label incidents and exploits	Proc	28	56%
BP11: Cyclical unsupervised and supervised machine learning	Proc	25	50%
BP12: Address AI hype and unrealistic expectations directly	Org	23	46%
BP13: Understand own infrastructure & environment	Org	23	46%

0	colla	abc	orati	on	76%	6
			%	50%	,	100%
2	84%					
3	76%				2	
7	74%					
1	68%					
3	66%					
3	66%					
2	64%		-			
1	62%					
Э	58%					
3	56%					
5	50%					
3	46%					
3	46%					

Cross-domain

Scientific rigor 68%

SPONSES: Advocated best practices Family	N S	% 0	%	50%	100%
BP14: Cloud and container-based tools and data storage	Tech	22	44%		
BP15: Distinct exploration and detection architectures	Tech	22	44%		
BP16: Participate in data sharing consortiums and initiatives	Tech	21	42%		
BP17: Deriving probabilistic and risk models	Org	20	40%		
BP18: Upper management buy in and support	Org	16	32%		
BP19: Human-in-the-loop reinforcement	Proc	14	28%		
BP20: Survey academic methods and techniques	Org	13	26%		
BP21: Cyber risk as general enterprise risk & reward	Org	12	24%		
BP22: Segment risk programmatically and outsource components	Org	9	18%		
BP23: Adding machine learning to SIEM	Tech	5	10%		
BP24: Preventative threat intelligence	Org	4	8%		
BP25: Hosting and pushing detection to endpoints	Tech	4	8%		
BP26: Honeypots to track and observe adversaries	Tech	2	4%		

Factor Analysis: 6 Challenge and 6 Best Practice Themes

Exploratory factor analysis (extraction of latent factors across responses)

Interpretation: Best Practice as Perceived 'Gap' (Required Objective)

Challenge to Best Practice Factor Correlation

CH1: Data preparation (access, vo integration, quality, transformation CH2: Unrealistic expectations prol marketing hype	n, selection)			BP1: Structured data preparation, discovery, engineering process BP2: Building process focused cross- functional team	Proc Org	BP14: Cloud and container-based tools and data storage BP15: Distinct exploration and detection architectures	Tech Tech
CH3: Contextual nature of normal anomalous behavioral phenomenc		factors: diagnosed gaps	Best practice factors:	prescribed treatments	Org	BP16: Participate in data sharing consortiums and initiatives	Tech
CH4: Lack of labeled incidents to fo	CH F1: Ex	pansive complexity	BP F2: Cross-domain collaboration		Proc	BP17: Deriving probabilistic and risk models	Org Org
CH5: Own infrastructure, shadow proliferation of exposure	CH F2: Tra	acking and context	BP F1: Scientific proce	ess	Org Tech	BP18: Upper management buy in and support BP19: Human-in-the-loop reinforcement	Proc
CH 6: Uncertainty leads to ineffect stance	CH F3. Da	ta management	BP F4: Data-driven / c	5	Tech	BP20: Survey academic methods and techniques	Org
CH 7: Traditional rules-based met	cirro. Du		BP F2: Cross-domain collaboration		Proc	BP21: Cyber risk as general enterprise risk & reward	Org
too many alerts CH 8: Program ownership, decisior	CH F5: Un	iclear ownership	BP F2: Cross-domain	collaboration	Org	BP22: Segment risk programmatically and outsource components	Org
processes				DF10. Track and taber incluents and exploits	Proc	BP23: Adding machine learning to SIEM	Tech
CH 9: Resourcing, developing, & h house	osting in	Innovations		BP11: Cyclical unsupervised and supervised machine learning	Proc	BP24: Preventative threat intelligence	Org
CH 10: Expanding breadth and cor	nplexity of	drive	drive	BP12: Address AI hype and unrealistic expectations directly	Org	BP25: Hosting and pushing detection to endpoints	Tech
cyber domain CH 11: Policy, privacy, regulatory,	and fines	Cybersecurity	Data science	BP13: Understand own infrastructure & environment	Org	BP26: Honeypots to track and observe adversaries	Tech
		challenges address - CSDS prescriptions	methods inform				

KEY CSDS GAPS: Factor-to-Factor Fitting

Root Cause Analysis: Fishbone / Ishikawa Diagram

IV. CSDS Designs

Copyright © 2019 Scott Mongeau All rights reserved.

Data Management: EDA Process + Feature Engineering

SOURCE: Alice Zheng, Amanda Casari. 2016. Feature Engineering for Machine Learning Models. O'Reilly Media.

Featurization: Example - Graph Analytics

Exploratory Data Analysis (EDA): Example – Probabilistic Analysis

Exception Events

Exception messages per user (ranked)

Quantiles									
100.0%	maximum	2559							
99.5%		2559							
97.5%		1889.725							
90.0%		517.5							
75.0%	quartile	172.75							
50.0%	median	55.5							
25.0%	quartile	9.75							
10.0%		3.3							
2.5%		1.825							
0.5%		1							
0.0%	minimum	1							

Summary Statistics							
Mean	184.01786						
Std Dev	380.96684						
Std Err Mean	35.997982						
Upper 95% Mean	255.35026						
Lower 95% Mean	112.68545						
N	112						

Feature Reduction: Example - Principal Component Analysis (PCA)

Entity Resolution

Entity Relational Specification

CSDS Data Processing EDA + Feature Engineering (example)

Root Cause Analysis: Fishbone / Ishikawa Diagram

* Resulting from factor analysis and factor-to-factor fitting

CSDS: What type of science is it?

Controlled experiments versus Pattern extrapolation

Research Methods for Cybersecurity

- Experimental
 - i.e. hypothetical-deductive and quasi-experimental
- Applied
 - i.e. applied experiments and observational studies
- Mathematical
 - ➢ i.e. theoretical and simulation-based
- Observational
 - i.e. exploratory, descriptive, machine learning-based

Manz, D. and Edgar, T. (2017) Research Methods for Cyber Security

Labels: What constitutes 'evidence'?

EXAMPLES OF SECURITY EVIDENCE

- Rules & - Field evidence Collected - Probing & signatures - Research & testing - 3rd party threat sourced intelligence Synthesized - Red Teaming - Expert opinion - Simulations - Thought - Laboratory experiments Inductive Deductive
- 1. Field evidence (e.g. observed incidents)
- 2. Sourcing own data from field testing (e.g. local experiments)
- 3. Honeypots
- 4. IDSs (Intrusion Detection Systems)
- 5. Simulation findings
- 6. Laboratory testing (e.g. malware in a staged environment)
- 7. Stepwise discovery (iterative interventions)
- 8. Pen testing (attempts to penetrate the network)
- 9. Red teaming (staged attacks to achieve particular goals)
- 10. Incidents (records associated with confirmed incidents)
- 11. Reinforcement learning (self-improving ML to achieve a goal)
- 12. Research examples (datasets recording attacks from research)
- 13. Expert review (opinion and guidance from experts)
- 14. Intelligence feed (indications from a 3rd party service)
- 15. Thought experiments (e.g. boundary conditions, counterfactuals)

Discovery \Leftrightarrow **Detection**

SEGMENTATION

CATEGORIZATION

Technology: Architect Exploratory & Detection Platforms*

Functional Architectural Segmentation

* Runs counter to the industry vendor stance of store 'all-the-data-all-the-time'

CSDS as a **Process: Discovery and Detection**

Unsupervised Discovery

Disassociating 'Normal' from 'Abnormal'

DEVIATION FROM OWN PATTERNS (OWN & PEER GROUP)
CSDS Theory Development

Example: Cyborg Network Behavioral Principals

Pareto Principle

- 80/20% pattern in network-usage
- Outliers: multiple devices 24 hours online
- High correlation: hrs online and breadth of activities
- Pattern observed across multiple networks

% Users to % Hours Active

'The Normals'*

22 weeks of behavioral clustering

SIX MAJORS PEER GROUP CLUSTERS

1: Infrequent users (~50%)
2: Sporadic use / low activity (~20%)
3: Active / specialized (~15%)
4: Active generalists (~6%)
5: Very active / specialized (~6%)
6: Sporadic high-low active (~3%)

* After 2% 'unusuals' removed

Staged Discovery Process

Domain

CSDS: High-Level Functional Process

Organization: Interdisciplinary Collaboration

Continuous Detection Improvement Process

CSDS Model Development Process

- Conceptual model
- Hypotheses
- Counterfactuals
- Falsification

V. Conclusions

Copyright © 2019 Scott Mongeau All rights reserved.

CSDS: A Work in Progress

Process of Professionalization

- Named professionals
- Set of methods and techniques
- Standards, best practices

Training programs

Certifications

Academic degree programs Focused research journals

Formal sub-specialization

Specialist Researcher Primary Care Surgeon Diagnostician Emergency Care

Foundation: CSDS Maturity Framework

References

- Aggarwal, C. (2013). "Outlier Analysis." Springer. <u>http://www.springer.com/la/book/9781461463955</u>
- Kirchhoff, C., Upton, D., and Winnefeld, Jr., Admiral J. A. (2015 October 7). "Defending Your Networks: Lessons from the Pentagon." Harvard Business Review. Available at https://www.sas.com/en_us/whitepapers/hbr-defending-your-networks-108030.html
- Longitude Research. (2014). "Cyberrisk in banking." Available at <u>https://www.sas.com/content/dam/SAS/bp_de/doc/studie/ff-st-longitude-research-cyberrisk-in-banking-2316865.pdf</u>
- Ponemon Institute. (2017). "When Seconds Count: How Security Analytics Improves Cybersecurity Defenses." Available at https://www.sas.com/en_us/whitepapers/ponemon-how-security-analytics-improves-cybersecurity-defenses-108679.html
- SANS Institute. (2015). "2015 Analytics and Intelligence Survey." Available at <u>https://www.sas.com/en_us/whitepapers/sans-analytics-intelligence-survey-108031.html</u>
- SANS Institute. (2016). "Using Analytics to Predict Future Attacks and Breaches." Available at <u>https://www.sas.com/en_us/whitepapers/sans-using-analytics-to-predict-future-attacks-breaches-108130.html</u>
- SAS Institute. (2016). "Managing the Analytical Life Cycle for Decisions at Scale." Available at https://www.sas.com/content/dam/SAS/en_us/doc/whitepaper1/manage-analytical-life-cycle-continuous-innovation-106179.pdf
- SAS Institute. (2017). "SAS Cybersecurity: Counter cyberattacks with your information advantage." Available at https://www.sas.com/en_us/software/fraud-security-intelligence/cybersecurity-solutions.html
- SAS Institute. (2019). "Data Management for Artificial Intelligence." Available at <u>www.sas.com/en_us/whitepapers/data-management-artificial-intelligence-109860.html</u>
- Security Brief Magazine. (2016). "Analyze This! Who's Implementing Security Analytics Now?" Available at https://www.sas.com/en_th/whitepapers/analyze-this-108217.html
- UBM. (2016). "Dark Reading: Close the Detection Deficit with Security Analytics." Available at https://www.sas.com/en_us/whitepapers/close-detection-deficit-with-security-analytics-108280.html

Cybersecurity Data Science (CSDS) Best Practices in an Emerging Profession

Scott Allen Mongeau INFORMS CAP[®]

Cybersecurity Data Scientist – SAS Institute PhD candidate - Nyenrode Business University, Netherlands

s.mongeau@edp1.nyenrode.nl scott@sark7.com scott.mongeau@sas.com

@SARK7 #CSDS2020

All opinions herein are my own, not those of my emoto-No rights claimed or implied to 3rd party materia Copyright © 2020 Scott Mongeau All rights reserve

APPENDIX

Copyright © 2019 Scott Mongeau All rights reserved

Research Overview

RESEARCH OBJECTIVE: <u>Diagnose</u> and <u>prescribe</u> treatment <u>designs</u> to address <u>gaps</u> *impeding the development of CSDS professional practice*

- **DIAGNOSTIC RESEARCH:** Undertaken to analyse, diagnose, and prescribe design treatments to address gaps resident in CSDS practice
- BUSINESS GOAL: Facilitate professional advancement of the CSDS domain by addressing 'body of theory' gaps
- <u>ACADEMIC CONTRIBUTION</u>
 - <u>Diagnosis</u> for a novel topic definition and awareness of a problem
 => addresses research lacuna
 - <u>Design prescriptions</u> to address empirically identified gaps conceptual and theoretical suggestions to address practical shortcomings => addresses management theory need
 90

CSDS High-Level Overview

- Represents a partial paradigm shift from traditional cybersecurity
 - Cybersecurity = rule-and-signature-based and focuses on boundary protection
 - CSDS = situational awareness and assumes persistent and prolific threats
- CSDS is data focused
- Applies quantitative, algorithmic, and probabilistic methods
- Attempts to quantify risk
- Focuses on producing focused and efficacious alerts
- Promotes inferential methods to categorize behavioral patterns
- Ultimately seeks to optimize cybersecurity operations
- Emerges from two parent domains...
- Which themselves are undergoing rapid transformation
- As such, 'body of theory' surrounding CSDS is evolving

CSDS Definition

- The practice of data science...
- to assure the continuity of digital devices, systems, services, software, and agents...
- in pursuit of the stewardship of systemic cybersphere stability,...
- spanning technical, operational, organizational, economic, social, and political contexts

CSDS Curriculum Design I

- 1.0 Introduction to the CSDS field 1.1. Cybersecurity basics and challenges
 - 1.2. Data science basics and challenges
 - 1.3. CSDS as a focused hybrid domain
 - 1.4. Differentiating analytics goals and methods
 - 1.5. Framing the cybersecurity analytics lifecycle
 - 1.6. Introducing cybersecurity analytics maturity

- 2.0 Cybersecurity data: challenges, sources, features, methods
 - 2.1. Sources of cybersecurity data, research datasets, types of evidence
 - 2.2. Examples: log files and network traffic
 - 2.3. Data preparation, quality, and processing
 - 2.4. Statistical exploration and analysis (EDA)
 - 2.5. Feature engineering and selection
 - 2.6. Feature extraction and advanced methods
 - 2.7. Positioning and handling real-time and streaming data

CSDS Curriculum Design II

- 3.0 Exploration and discovery: pattern extraction, segmentation, baselining, and anomalies
 - 3.1. Building contextual knowledge
 - 3.2. Segmentation and categorization
 - 3.3. Multivariate analysis
 - 3.4. Parameterization and probability
 - 3.5. Outliers and differentiating normal from abnormal
 - 3.6. Anomaly types, anomaly gain, and detection
 - 3.7. Unsupervised machine learning
 - 3.8. Establishing a foundation for prediction

- 4.0 Prediction and detection: models, incidents, and validation
 - 4.1. Distinguishing explanation versus prediction
 - 4.2. Framing detective analytics: combining explanation and prediction
 - 4.3. Econometric approaches
 - 4.4. Predictive machine learning (supervised machine learning)
 - 4.5. Deep learning
 - 4.6. Reinforcement learning
 - 4.7. Model diagnostics and management
 - 4.8. Bootstrapping detection: semi-supervised machine learning

CSDS Curriculum Design III

• 5.0 Operationalization: CSDS as-a-process

- 5.1. Analytics process management: integrating discovery and detection
- 5.2. Human-in-the-loop: integrating investigations and investigative feedback
- 5.3. Robo-automation, online machine learning, and self-improving processes
- 5.4. Technical and functional architectures
- 5.5. Systems integration and orchestration
- 5.6. Cybersecurity analytics maturity recap
- 5.7. Cybersecurity risk and optimization
- 5.8. Guidance on implementing CSDS programs

